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Abstract

We consider morphisms (also called Galois-Tukey connections) between bi-
nary relations that are used in the theory of cardinal characteristics. In [8]
we have shown that there are pairs of relations with no Borel morphism
connecting them. The reason was a strong impact of the first of the two
functions that constitute a morphism, the so-called function on the ques-
tions. In this work we investigate whether the second half, the function
on the answers’ side, has a similarly strong impact. The main question is:
Does the non-existence of a Borel morphism imply the non-existence of a
morphism that is only Borel on the answers’ side? We give sufficient condi-
tions for an affirmative answer. The results are applied to the unsplitting
relations where it has been open whether there is a morphism that is Borel
on the answers’ side.
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1 Introduction

We work in Vojtas’ framework [10] in which cardinal characteristics of the con-
tinuum can be regarded as norms of corresponding relations A = (A_, A, A)
where A_ A, C2¥ AC A_x Ay, and the norm of A is

JA|| = min{|Z| : ZC A AVe e A_ 3Tz € Z A(z,2)}.
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A Galois-Tukey connection from a relation B to a relation A, which we call as
in [4] a morphism from A to B (— notice the different direction —), is a pair of
functions («, ) such that

a:B_ — A_,
B:4, > B,
Vb€ B_VYa € Ay (A(a(b),a) — B(b, 5(a))).

This back and forth can, according to Blass [3] be interpreted as follows: The
sets A_ and B_ contain questions that are to be answered by suitable elements
from the sets of possible answers A, and B, respectively. The relation A(z,y)
says that gy is a correct answer to the question x. The task is, given b € B_,
to find a y € By such that B(b,y). Now these questions b are mapped by « to
the A-questions “Find an a € A, such that A(«(b),a).” Any such answer a is
mapped back by 8 to a solution y = (a) of the original task B(b,y). So we
consider a as the function on the questions’ side and [ as the function on the
answers’ side.

If there is a morphism from A to B, then ||B|| < ||A||, and indeed the
proofs of the inequalities usually exhibit morphisms between the corresponding
relations.

Like Blass [4], we call inequalities correct if they are true in every model of
ZFC, and the other ones incorrect. A result of Yipariki in [11] shows, that there
may be morphisms corresponding to incorrect inequalities. These morphisms
are not absolute between different models of ZFC, of course, and on the other
hand for Borel «, 3, A, B the totality of the two constituents and the back-and-
forth condition are both 31 (boldface, in the parameters coding a and 3) hence
absolute by Shoenfield’s theorem (see e.g. [6, Theorem 98, page 530]).

Most of the morphisms used in the proofs of well-known inequalities between
cardinal characteristics e.g. all morphisms used in the proofs of the inequalities in
Cichon’s diagram, can be chosen to be Borel functions on Borel domains, which
we will call Borel morphisms. We consider only relations A, B whose domains,
ranges, and relations itself are Borel subsets of 2 respectively 2¢ x 2¢.

In [8], the first example of a correct inequality between the norms of two
relations without a Borel morphism proving it was given. The older examples
for non-existence of Borel morphisms are based upon incorrect inequalities and
forcing, see [4] and Section 2 of this paper. Indeed, in [8] the stronger fact that
there is no morphism («, 5) with Baire measurable o and arbitrary § was proved.
Motivated by this indication of some asymmetry, we are now interested in the
complexity of each half of a morphism separately and name the two halves:

We call a morphism («, ) Borel morphism on the questions if a is Borel, and
Borel morphism on the answers if 3 is Borel and semi Borel morphism if o or
is Borel. We call a morphism semi Borel morphism if it is Borel on the questions
or Borel on the answers.



In this terminology we can now formulate the questions:

Does the existence of a semi Borel morphism imply the existence of a Borel
morphisms? Is there a Borel morphism on the answers for the pairs of unsplitting
relations?

With methods of descriptive set theory, we shall give some consistency results
for the answers to our questions.

I would like to thank Andreas Blass for many helpful discussions on this
subject.

2 The case of incorrect inequalities

The first kind of results on the non-existence of semi Borel morphisms belongs
to a family of pairs of Borel relations (A, B) such that ||A|| < ||B|| is consistent.
The inequality ||A|| > ||B]| that would follow from the existence of a morphism
of arbitrary complexity is called “incorrect” in [4]. In many cases, namely in the
limit steps in the iteration do not destroy the first part of the property (x) below,
a model for ||A]| < ||B|| can be gotten by iterating a forcing notion P in V' with
(x) Ny times with finite support over a model of C'H, where:

(x) For some P-generic g over V: Vo € V[g]NA_ Jv eV A(z,v)Ag €
B_AVv eV =B(g,v).

For information on limit steps in forcing interations, see Goldstern [5].
The following theorem is a generalization of the examples given in [4].

Theorem 1 The existence of a forcing with (x) implies that there are no Borel
morphisms on the questions from A to B in V' and no Borel morphisms on the
answers from A to B in V[g| for g as in (x).

Proof: : Note that, in constrast to the case of Borel morphisms, we do not
know whether the existence of a semi Borel morphism is a ¥3-property and hence
we have to handle absoluteness in a careful manner.

Suppose that « is Borel and that ¢ is as in (%), and that

V E Yo 3w Yu (A(a(u),v) = B(u,w)).

Fix a v € V such that A(a(g),v). Then
V E JwVYu (Ala(u),v) = Blu,w)).

Again, we fix such a w € V. Then, by Shoenfield’s absoluteness theorem,
V,Vigl E Yu (A(a(u),v) = B(u,w)).

If we read this in V[g] and insert g for u we get B(g, w), which is a contradiction.
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Now suppose (3 is Borel. For this part see also [10][5.1.5]. Suppose
Vig] E Yu3zVYv (A(z,v) = B(u, 5(v)).
We take u = g and get in V[g] some z such that:

Vigl = Vv (A(z,v) = B(g, B(v)).

Now we take some v € V' such that A(z,v) and get 5(v) € V and B(g, 5(v)), a
contradiction. O

3 From semi Borel to Borel

In this section, we prove our main results. They apply to situations of correct
inequalities. We work mainly in the general setting given in the introduction, and
some stronger results are obtained for the sharp unsplitting relations Rf,. Let n®
be the set of all functions from w to n and [w]” be the set of all infinite subsets
of w. For n > 1, we have

R! = (n“,[w],{(f,Y) : fis constant on Y'}).

In the following theorem, we use the additivity and the covering number of
the ideal M of sets of first Baire category, also called meager sets:

add(M) = min{card(Z) : UZ = is not meager A VZ € Z
7 is meager},
cov(M) = min{card(2) : UZ =R A VZ € Z 7 is meager},
and relations B such that B_ is not meager or such that B_ is the whole
space, like in the case of Rg. There are analogous formulations for the relations

B where B_ is meager but not a measure 0 set: Then the additivity of the ideal
N of Lebesgue measure 0 sets is adequate.

Theorem 2 If there is a Borel morphism on the answers from A to B and if
add(M) > Ny and if B_ is not meager, then there are an open subset O of B_
and a meager subset of B_ such that there is a Borel morphism from A to

(B_N(O\ M),B,,BN(B_N(O\ M) x B,)).

Proof: Given a morphism («/,3) with Borel §, any uniformization of the
following relation

{(z,y) : Va € Ay (A(y,a) = B(z, 5(a))}



will yield an a such that (a, ) is a morphism. Since the relation in ITi, by
Kondd’s theorem ([6], page 521), we can choose «a to be a II} function. By
a theorem of Sierpinski’s ([6], page 520), a is the union of ¥; Borel functions
a;, i € V. Since add(M) > ¥; and B. = dom(«) is not meager, not all of
the dom(a;) are meager, say dom(ay) is not. As dom(ag) is X1, it has the Baire
property and hence contains a basic open set minus a meager set, O\ M. The pair
(ayp, B) is a Borel morphism from A to ((O\M)NB_,By,BN((O\M)x By)). O

Remark: Of course, an analogue to Theorem 2 starting with a Borel mor-
phism on the questions can be formulated in an obvious way: The domain of the
new [ will be A, intersected with some open minus a meager set. In general,
the questions are not privileged above the answers, however, in the investigated
examples, the combinatorics on the questions’ side can be handled while the com-
binatorics on the answers’ side does not allow a similar Ramsey type method.

Since there is no Borel morphism on the questions (e.g.) from Rg to Rg
restricted to an open \ a meager set, cf. [8], and since the domain of RY is the
full 3¥ we get:

Corollary 3 If cov(M) > Xy, there is no Borel morphism on the answers from
R’ to RY.

There are other conditions for the same conclusion:

Theorem 4 IfVa € R wlL[a] < wy or, more general, if every A} set has the Baire
property and if there is a Borel morphism on the answers from A to B and if B_
15 not meager, then there is a meager set M such that there is a Borel morphism,

from A to (B_\ M,B,,BN(B_N(B_\ M) x By)).

Proof: By a theorem of Solovay (see [6], page 547), the first premise is a sub-
case of the second one, so we assume that every A} set has the Baire property.
Suppose that («, #) is a morphism from A to B with second half Borel. a can
be chosen IT} by Kondod’s theorem. The sets o= ({f € 2¥ : f D s}), s € 2<%,
are Al and have the Baire property, hence « is Baire measurable. Then we can
repeat the well-known argument for Borel functions [9][Exercise 2H.10, page 120]
that there is a comeager set on which « is continuous. 0

For the non-trivial morphisms between the sharp unsplitting relations, we get:

Corollary 5 If Va € R wlL[a] < wy or, more general, if every AL set has the
Baire property, then there is no Borel morphism on the answers from Rg to Rg.
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Judah and Shelah [7], see also [1, Theorem 9.2.1], showed that every Al set
has the Baire property iff for all @ € R there is a Cohen generic real over L[a].
Since in L[a] there are w; codes for meager sets we get a model where every A}
set has the Baire property just by adding ws Cohen reals to any given model.
Also in any model of cov(M) > w; every A} set has the Baire property.

Now we will show that, if there is an inaccessible cardinal, then there is a
model of ZFC + cov(M) = add(M) = X; + Va € R w™ < w; + ~CH. This
will show that the hypotheses on cardinal characteristics in Theorem 2 and their
corollaries are not necessary.

Theorem 6 Suppose that ZFC + 3k inaccessible 1is consistent. Then the fol-
lowing is consistent: ZFC + cov(M) =Xy + w™ < w; for alla € R+ -CH.

Proof: Suppose that k is an inaccessible cardinal in V. We take P; = the
Levy collapse of k to wy, Gy a Pj-generic filter over V', and P, the forcing By, for
adding simultaneously R, random reals over V[G].

Then V[G,][Gs] = 2¢¥ = R, because of the random reals, V[G][G2] E
cov(M) = w; because C'H holds in V' and in V[G;] and adding random reals
with By, does not increase cov(M) (for a proof, see p. 129 of [1]).

We show that V[G1][Gs] = Va € R wi™ < wi: Any real a has a By,-name d
over V[G,]. We claim that there is o < x such that a = (||a(n) = 0]|®* : n €
w) e V|G, | al.

The boolean values can be chosen as G sets in the measure algebra on (2+)"2
in V[G,]. Hence a can be coded by an element of “(Ry x {Gjs sets in (2¢)¥2}),
and hence there are countable sets Sy, S such that @ is coded in “(Sy x {Gj sets
in (29)1}). So a € V[G, | o] for some « € k, because each of the w components
of the code is defined by G; | « for some «. & is inaccessible in V[G; | o] and in
V[G, | a][a] as the algebra belonging to a is c.c.c. in V[G] | af.

Since the statement Vy € x vt 9l < k changes to Vy € w; v 19 < w; when
k is collapsed to wq, we get:

VG Talla] | Vyeryt M <k,
VIG: | o][d][Gy | o, k)] = Yy €w v M < wy,
and since the algebra belonging to a is not affected by G [ [a, k), it is product
forcing and we can switch the last two parts
VIGy [ &[Gy [ ey, k)]la] E Vy€w v <w,
VIGila] &= Vy€w yTHd <y,
VIGi][Gs] E VaeRYy € w v H <y,



Remark: The above proof shows that the situation Va € R wlLM < wy when
obtained by a Levy Collane is preserved when one real is added. If we just have
the premise Va € R wlL ol < wq, then there still are some preservation theorems
for Souslin c.c.c. forcings and 2} facts:

Proposition 7 Suppose that A and B are Borel relations, 3 is Al(c) for some
c € R. The following statement is a ¥3(c)-formula ¢g(c):

“If there is an « such that (o, B) is a morphism from A to B, then there is
an « such that (o, B) is a Borel morphism from A to B.”

Proof:

Vb Jy Ya (A(y,a) — B(b,5(a))] —
da [Va Vb (A(a(b),a) — B(b,3(a))) A «is a Borel code |

is ¥21(c). We do not know whether this is an optimal bound for its complexity. []

We use the following fact:

Fact: (Lemma 9.5.4, page 476 in [1]) Assume that w™™ < w, for all @ € R.
Let G be P-generic over V for some Souslin c.c.c. forcing P. For any z € V[G]NR
and a 3} formula ¢(x) with parameters in V/,

Viz] E o(z) & VIG] = ¢(x).

If we add a Hechler generic real G to any model V' of Va € R wlLM <
w; + "CH (e.g. you the V[G,][G2] of Theorem 6), by [2] we get V'[G] E
cov(M) = 2 > ®;,add(M) = Ry, hence by Souslin absoluteness for ! sen-
tences V'[G] is a model of “there is no Borel morphism on the answers from
R) to RY’. Also, by Tl absoluteness, V'[G] models “if there an Borel mor-
phism with parameter in V"’ on the answers from A to B, then there is an open
set O and a meager set M such that there is a Borel morphism from A to
(B_.N(O\M),B,,BN(B_N(O\ M) x By))”. So our theorems can be trans-
ferred to quite different constellations of cardinal invariants.

One can also start form a model of “VYa € R there is a Cohen real over L[a]”
and then collapse the continuum to w; without adding reals. Then all cardinal
invariants are w; but still the theorems on getting Borel morphisms from semi
Borel morphisms hold.

4 A general formulation

Here we discuss briefly whether having a Borel morphism from A to (B_N(O\ M),
B.,BN(B_-N(O\ M) x By)) implies the existence of a Borel morphism from
A to B.



Definition 8 A pair of relations (A, B) is called fairly homogeneous for Borel
morphisms iff for all open sets O in B_ and for all meager sets M in B_ the
following holds: if there is a Borel morphism from A to (O\ M)NB_,B,,BnN
((O\ M) x By)), then there is a Borel morphism from A to B.

The following are examples among the “natural” relations that can be found
in the literature.

1. Any two sharp unsplitting relations. For n < m, the identity on both com-
ponents is a Borel morphism from Rf to Rf. For n > m, for any open set
O in n® and any meager set M in n“ there is no Borel morphism from Rf to
(n® N (O\ M), [w]*, ((O\ M) x [w]*) N RE), cf. [8], so the premise in the defining
implication is never fulfilled.

2. (D,S), where D = (w*,w*, <*), S = ([w]*, [w]”, {(X,Y) : card(X NY) =
card(X'\Y) = w}. Asin second half of the first example, the reason for this being
an example is, that there is no Borel morphism from D to ([w]*N(O\ M), [w]?, S)
for any open O and meager M. This is proved as in [4] and it is easy to see that
the restriction of S does not make any difference.

3. A counterexample. If we take a meager set M of Lebesgue measure 1, then
the relation (O \ M, N, €) has norm 1 and there is a Borel morphism from
(O\ M, N, €) into itself (— the identity —) and there is no morphism from
(O\ M,N,¢€) into ([0,1], NV, €) of any complexity, because otherwise the latter
would have norm 1 instead of the covering number for Lebesgue null sets.

For pairs (A, B) that are fairly homogeneous for Borel morphisms Theorems 2
and 4 read

Theorem 9 If there is a Borel morphism on the answers from A to B and if
add(B) > Xy and if B_ is not meager, then there is a Borel morphism from A to
B.

Theorem 10 If Va € R wlLM < wy or, more general, if every Al set has the
Buaire property and if there is a Borel morphism on the answers from A to B and
if B_ is not meager, then there is a Borel morphism from A to B.

We conclude with some open questions:
1. Is Theorem 4 provable in ZFC?
2. Is “there is a Borel morphism on the answers from R% to R.” consistent?

3. Are there more natural examples (A, B) that are not fairly homogeneous for
Borel morphisms?
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