
Borel on the questions versus Borel on theanswersHeike Mildenberger �July 6, 2000AbstratWe onsider morphisms (also alled Galois-Tukey onnetions) between bi-nary relations that are used in the theory of ardinal harateristis. In [8℄we have shown that there are pairs of relations with no Borel morphismonneting them. The reason was a strong impat of the �rst of the twofuntions that onstitute a morphism, the so-alled funtion on the ques-tions. In this work we investigate whether the seond half, the funtionon the answers' side, has a similarly strong impat. The main question is:Does the non-existene of a Borel morphism imply the non-existene of amorphism that is only Borel on the answers' side? We give suÆient ondi-tions for an aÆrmative answer. The results are applied to the unsplittingrelations where it has been open whether there is a morphism that is Borelon the answers' side.AMS Subjet Classi�ation: 03E15, 03E35, 03E55Keywords: Cardinal harateristis, Galois-Tukey onnetions, Borel morphisms,Souslin foring1 IntrodutionWe work in Vojt�a�s' framework [10℄ in whih ardinal harateristis of the on-tinuum an be regarded as norms of orresponding relations A = (A�; A+; A)where A�,A+ � 2!, A � A� � A+, and the norm of A isjjAjj = minfjZj : Z � A+ ^ 8x 2 A� 9z 2 Z A(x; z)g:�Partially supported by Deutshe Forshungsgemeinshaft grant no. Mi 492/1-2.
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A Galois-Tukey onnetion from a relation B to a relation A, whih we all asin [4℄ a morphism from A to B (| notie the di�erent diretion |), is a pair offuntions (�; �) suh that�:B� ! A�;�:A+ ! B+;8b 2 B� 8a 2 A+ (A(�(b); a)! B(b; �(a))):This bak and forth an, aording to Blass [3℄ be interpreted as follows: Thesets A� and B� ontain questions that are to be answered by suitable elementsfrom the sets of possible answers A+ and B+ respetively. The relation A(x; y)says that y is a orret answer to the question x. The task is, given b 2 B�,to �nd a y 2 B+ suh that B(b; y). Now these questions b are mapped by � tothe A-questions \Find an a 2 A+ suh that A(�(b); a)." Any suh answer a ismapped bak by � to a solution y = �(a) of the original task B(b; y). So weonsider � as the funtion on the questions' side and � as the funtion on theanswers' side.If there is a morphism from A to B, then jjBjj � jjAjj, and indeed theproofs of the inequalities usually exhibit morphisms between the orrespondingrelations.Like Blass [4℄, we all inequalities orret if they are true in every model ofZFC, and the other ones inorret. A result of Yipariki in [11℄ shows, that theremay be morphisms orresponding to inorret inequalities. These morphismsare not absolute between di�erent models of ZFC, of ourse, and on the otherhand for Borel �, �, A, B the totality of the two onstituents and the bak-and-forth ondition are both �12 (boldfae, in the parameters oding � and �) heneabsolute by Shoen�eld's theorem (see e.g. [6, Theorem 98, page 530℄).Most of the morphisms used in the proofs of well-known inequalities betweenardinal harateristis e.g. all morphisms used in the proofs of the inequalities inCiho�n's diagram, an be hosen to be Borel funtions on Borel domains, whihwe will all Borel morphisms. We onsider only relations A, B whose domains,ranges, and relations itself are Borel subsets of 2! respetively 2! � 2!.In [8℄, the �rst example of a orret inequality between the norms of tworelations without a Borel morphism proving it was given. The older examplesfor non-existene of Borel morphisms are based upon inorret inequalities andforing, see [4℄ and Setion 2 of this paper. Indeed, in [8℄ the stronger fat thatthere is no morphism (�; �) with Baire measurable � and arbitrary � was proved.Motivated by this indiation of some asymmetry, we are now interested in theomplexity of eah half of a morphism separately and name the two halves:We all a morphism (�; �) Borel morphism on the questions if � is Borel, andBorel morphism on the answers if � is Borel and semi Borel morphism if � or �is Borel. We all a morphism semi Borel morphism if it is Borel on the questionsor Borel on the answers. 2



In this terminology we an now formulate the questions:Does the existene of a semi Borel morphism imply the existene of a Borelmorphisms? Is there a Borel morphism on the answers for the pairs of unsplittingrelations?With methods of desriptive set theory, we shall give some onsisteny resultsfor the answers to our questions.I would like to thank Andreas Blass for many helpful disussions on thissubjet.2 The ase of inorret inequalitiesThe �rst kind of results on the non-existene of semi Borel morphisms belongsto a family of pairs of Borel relations (A;B) suh that jjAjj < jjBjj is onsistent.The inequality jjAjj � jjBjj that would follow from the existene of a morphismof arbitrary omplexity is alled \inorret" in [4℄. In many ases, namely in thelimit steps in the iteration do not destroy the �rst part of the property (�) below,a model for jjAjj < jjBjj an be gotten by iterating a foring notion P in V with(�) �2 times with �nite support over a model of CH, where:(�) For some P -generi g over V : 8x 2 V [g℄\A� 9v 2 V A(x; v)^g 2B� ^ 8v 2 V :B(g; v).For information on limit steps in foring interations, see Goldstern [5℄.The following theorem is a generalization of the examples given in [4℄.Theorem 1 The existene of a foring with (�) implies that there are no Borelmorphisms on the questions from A to B in V and no Borel morphisms on theanswers from A to B in V [g℄ for g as in (�).Proof: : Note that, in onstrast to the ase of Borel morphisms, we do notknow whether the existene of a semi Borel morphism is a �12-property and henewe have to handle absoluteness in a areful manner.Suppose that � is Borel and that g is as in (�), and thatV j= 8v 9w 8u (A(�(u); v)! B(u; w)):Fix a v 2 V suh that A(�(g); v). ThenV j= 9w 8u (A(�(u); v)! B(u; w)):Again, we �x suh a w 2 V . Then, by Shoen�eld's absoluteness theorem,V; V [g℄ j= 8u (A(�(u); v)! B(u; w)):If we read this in V [g℄ and insert g for u we get B(g; w), whih is a ontradition.3



Now suppose � is Borel. For this part see also [10℄[5.1.5℄. SupposeV [g℄ j= 8u 9z 8v (A(z; v)! B(u; �(v)):We take u = g and get in V [g℄ some z suh that:V [g℄ j= 8v (A(z; v)! B(g; �(v)):Now we take some v 2 V suh that A(z; v) and get �(v) 2 V and B(g; �(v)), aontradition. �3 From semi Borel to BorelIn this setion, we prove our main results. They apply to situations of orretinequalities. We work mainly in the general setting given in the introdution, andsome stronger results are obtained for the sharp unsplitting relations R℄n. Let n!be the set of all funtions from ! to n and [!℄! be the set of all in�nite subsetsof !. For n � 1, we haveR℄n = (n!; [!℄!; f(f; Y ) : f is onstant on Y g):In the following theorem, we use the additivity and the overing number ofthe ideal M of sets of �rst Baire ategory, also alled meager sets:add(M) = minfard(Z) : [Z = is not meager ^ 8Z 2 ZZ is meagerg;ov(M) = minfard(Z) : [Z = R ^ 8Z 2 Z Z is meagerg;and relations B suh that B� is not meager or suh that B� is the wholespae, like in the ase of R℄3. There are analogous formulations for the relationsB where B� is meager but not a measure 0 set: Then the additivity of the idealN of Lebesgue measure 0 sets is adequate.Theorem 2 If there is a Borel morphism on the answers from A to B and ifadd(M) > �1 and if B� is not meager, then there are an open subset O of B�and a meager subset of B� suh that there is a Borel morphism from A to(B� \ (O nM) ; B+; B \ (B� \ (O nM)� B+)) :Proof: Given a morphism (�0; �) with Borel �, any uniformization of thefollowing relationf(x; y) : 8a 2 A+ (A(y; a)! B(x; �(a))g4



will yield an � suh that (�; �) is a morphism. Sine the relation in �11, byKondô's theorem ([6℄, page 521), we an hoose � to be a �11 funtion. Bya theorem of Sierpi�nski's ([6℄, page 520), � is the union of �1 Borel funtions�i, i 2 �1. Sine add(M) > �1 and B� = dom(�) is not meager, not all ofthe dom(�i) are meager, say dom(�0) is not. As dom(�0) is �11, it has the Baireproperty and hene ontains a basi open set minus a meager set, OnM . The pair(�0; �) is a Borel morphism fromA to ((OnM)\B�; B+; B\((OnM)�B+)). �Remark: Of ourse, an analogue to Theorem 2 starting with a Borel mor-phism on the questions an be formulated in an obvious way: The domain of thenew � will be A+ interseted with some open minus a meager set. In general,the questions are not privileged above the answers, however, in the investigatedexamples, the ombinatoris on the questions' side an be handled while the om-binatoris on the answers' side does not allow a similar Ramsey type method.Sine there is no Borel morphism on the questions (e.g.) from R℄2 to R℄3restrited to an open n a meager set, f. [8℄, and sine the domain of R℄3 is thefull 3! we get:Corollary 3 If ov(M) > �1, there is no Borel morphism on the answers fromR℄2 to R℄3.There are other onditions for the same onlusion:Theorem 4 If 8a 2 R !L[a℄1 < !1 or, more general, if every �12 set has the Baireproperty and if there is a Borel morphism on the answers from A to B and if B�is not meager, then there is a meager set M suh that there is a Borel morphismfrom A to (B� nM;B+; B \ (B� \ (B� nM)�B+)).Proof: By a theorem of Solovay (see [6℄, page 547), the �rst premise is a sub-ase of the seond one, so we assume that every �12 set has the Baire property.Suppose that (�; �) is a morphism from A to B with seond half Borel. � anbe hosen �11 by Kondô's theorem. The sets ��100(ff 2 2! : f � sg), s 2 2<!,are �12 and have the Baire property, hene � is Baire measurable. Then we anrepeat the well-known argument for Borel funtions [9℄[Exerise 2H.10, page 120℄that there is a omeager set on whih � is ontinuous. �For the non-trivial morphisms between the sharp unsplitting relations, we get:Corollary 5 If 8a 2 R !L[a℄1 < !1 or, more general, if every �12 set has theBaire property, then there is no Borel morphism on the answers from R℄2 to R℄3.�
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Judah and Shelah [7℄, see also [1, Theorem 9.2.1℄, showed that every �12 sethas the Baire property i� for all a 2 R there is a Cohen generi real over L[a℄.Sine in L[a℄ there are !1 odes for meager sets we get a model where every �12set has the Baire property just by adding !2 Cohen reals to any given model.Also in any model of ov(M) > !1 every �12 set has the Baire property.Now we will show that, if there is an inaessible ardinal, then there is amodel of ZFC + ov(M) = add(M) = �1 + 8a 2 R !L[a℄1 < !1 + :CH. Thiswill show that the hypotheses on ardinal harateristis in Theorem 2 and theirorollaries are not neessary.Theorem 6 Suppose that ZFC + 9� inaessible is onsistent. Then the fol-lowing is onsistent: ZFC + ov(M) = �1 + !L[a℄1 < !1 for all a 2 R + :CH.Proof: Suppose that � is an inaessible ardinal in V . We take P1 = theLevy ollapse of � to !1, G1 a P1-generi �lter over V , and P2 the foring B�2 foradding simultaneously �2 random reals over V [G1℄.Then V [G1℄[G2℄ j= 2! = �2 beause of the random reals, V [G1℄[G2℄ j=ov(M) = !1 beause CH holds in V and in V [G1℄ and adding random realswith B�2 does not inrease ov(M) (for a proof, see p. 129 of [1℄).We show that V [G1℄[G2℄ j= 8a 2 R !L[a℄1 < !1: Any real a has a B�2-name _aover V [G1℄. We laim that there is � < � suh that _a = (jja(n) = 0jjB�2 : n 2!) 2 V [G1 � �℄.The boolean values an be hosen as GÆ sets in the measure algebra on (2!)�2in V [G1℄. Hene _a an be oded by an element of !(�2 � fGÆ sets in (2!)!2g),and hene there are ountable sets S1; S2 suh that _a is oded in !(S2�fGÆ setsin (2!)S1g). So _a 2 V [G1 � �℄ for some � 2 �, beause eah of the ! omponentsof the ode is de�ned by G1 � � for some �. � is inaessible in V [G1 � �℄ and inV [G1 � �℄[a℄ as the algebra belonging to a is ... in V [G1 � �℄.Sine the statement 8 2 � + L[a℄ < � hanges to 8 2 !1 + L[a℄ < !1 when� is ollapsed to !1, we get:V [G1 � �℄[a℄ j= 8 2 � + L[a℄ < �;V [G1 � �℄[a℄[G1 � [�; �)℄ j= 8 2 !1 + L[a℄ < !1;and sine the algebra belonging to a is not a�eted by G1 � [�; �), it is produtforing and we an swith the last two partsV [G1 � �℄[G1 � [�; �)℄[a℄ j= 8 2 !1 + L[a℄ < !1;V [G1℄[a℄ j= 8 2 !1 + L[a℄ < !1;V [G1℄[G2℄ j= 8a 2 R 8 2 !1 + L[a℄ < !1: �6



Remark: The above proof shows that the situation 8a 2 R !L[a℄1 < !1 whenobtained by a Levy ollapse is preserved when one real is added. If we just havethe premise 8a 2 R !L[a℄1 < !1, then there still are some preservation theoremsfor Souslin ... forings and �13 fats:Proposition 7 Suppose that A and B are Borel relations, � is �11() for some 2 R. The following statement is a �13()-formula ��():\If there is an � suh that (�; �) is a morphism from A to B, then there isan � suh that (�; �) is a Borel morphism from A to B."Proof:[8b 9y 8a (A(y; a) ! B(b; �(a))℄!9� [8a 8b (A(�(b); a) ! B(b; �(a))) ^ � is a Borel ode ℄is �13(). We do not know whether this is an optimal bound for its omplexity. �We use the following fat:Fat: (Lemma 9.5.4, page 476 in [1℄) Assume that !L[a℄1 < !1 for all a 2 R.Let G be P-generi over V for some Souslin ... foring P. For any x 2 V [G℄\Rand a �13 formula �(x) with parameters in V ,V [x℄ j= �(x), V [G℄ j= �(x):If we add a Hehler generi real G to any model V 0 of 8a 2 R !L[a℄1 <!1 + :CH (e.g. you the V [G1℄[G2℄ of Theorem 6), by [2℄ we get V 0[G℄ j=ov(M) = 2! > �1; add(M) = �1, hene by Souslin absoluteness for �13 sen-tenes V 0[G℄ is a model of \there is no Borel morphism on the answers fromR℄2 to R℄3". Also, by �13 absoluteness, V 0[G℄ models \if there an Borel mor-phism with parameter in V 0 on the answers from A to B, then there is an openset O and a meager set M suh that there is a Borel morphism from A to(B� \ (O nM) ; B+; B \ (B� \ (O nM)�B+))". So our theorems an be trans-ferred to quite di�erent onstellations of ardinal invariants.One an also start form a model of \8a 2 R there is a Cohen real over L[a℄"and then ollapse the ontinuum to !1 without adding reals. Then all ardinalinvariants are !1 but still the theorems on getting Borel morphisms from semiBorel morphisms hold.4 A general formulationHere we disuss briey whether having a Borel morphism fromA to (B�\(OnM);B+; B \ (B� \ (O nM) � B+)) implies the existene of a Borel morphism fromA to B. 7



De�nition 8 A pair of relations (A;B) is alled fairly homogeneous for Borelmorphisms i� for all open sets O in B� and for all meager sets M in B� thefollowing holds: if there is a Borel morphism from A to ((O nM) \B�; B+; B \((O nM)� B+)), then there is a Borel morphism from A to B.The following are examples among the \natural" relations that an be foundin the literature.1. Any two sharp unsplitting relations. For n � m, the identity on both om-ponents is a Borel morphism from R℄m to R℄n. For n > m, for any open setO in n! and any meager set M in n! there is no Borel morphism from R℄m to(n! \ (O nM); [!℄!; ((O nM)� [!℄!)\R℄n), f. [8℄, so the premise in the de�ningimpliation is never ful�lled.2. (D;S), where D = (!!; !!;��), S = ([!℄!; [!℄!; f(X; Y ) : ard(X \ Y ) =ard(X nY ) = !g. As in seond half of the �rst example, the reason for this beingan example is, that there is no Borel morphism fromD to ([!℄!\(OnM); [!℄!; S)for any open O and meager M . This is proved as in [4℄ and it is easy to see thatthe restrition of S does not make any di�erene.3. A ounterexample. If we take a meager set M of Lebesgue measure 1, thenthe relation (O n M;N ;2) has norm 1 and there is a Borel morphism from(O nM;N ;2) into itself (| the identity |) and there is no morphism from(O nM;N ;2) into ([0; 1℄;N ;2) of any omplexity, beause otherwise the latterwould have norm 1 instead of the overing number for Lebesgue null sets.For pairs (A;B) that are fairly homogeneous for Borel morphisms Theorems 2and 4 readTheorem 9 If there is a Borel morphism on the answers from A to B and ifadd(B) > �1 and if B� is not meager, then there is a Borel morphism from A toB.Theorem 10 If 8a 2 R !L[a℄1 < !1 or, more general, if every �12 set has theBaire property and if there is a Borel morphism on the answers from A to B andif B� is not meager, then there is a Borel morphism from A to B.We onlude with some open questions:1. Is Theorem 4 provable in ZFC?2. Is \there is a Borel morphism on the answers from R℄2 to R℄3" onsistent?3. Are there more natural examples (A;B) that are not fairly homogeneous forBorel morphisms?
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