THE STRENGTHS OF SOME VIOLATIONS OF COVERING
HEIKE MILDENBERGER

ABSTRACT. We show that in order to get Vi C V, two models of ZFC with
the same cofinality function and the same w-sequences and some set in V5 not
being covered by any set in V;j of the same cardinality an inner model of V5 a
measurable cardinal « of Mitchell order xT1 is necessary.

We show that changing cardinal characteristics without changing cofinal-
ities or w-sequences (which was done for some characteristics in [12]) has
consistency strength at least o(k) = k*.

From this we get that the changing of cardinal characteristics without chang-
ing cardinals or w-sequences has consistency strength o(k) = wy, even in the
case of characteristics that do not stem from a transitive relation. Hence the
known forcing constructions for such a change have lowest possible consistency
strength.

We consider some stronger violations of covering which have appeared as
intermediate steps in forcing constructions.

1. INTRODUCTION

We are going to prove the results listed in the abstract and some equiconsistent
formulations in terms of pseudo powers and possible cofinalities. This gives some
bounds on the consistency stengths of the constellations obtained in [11] and in
[12].

We shall obtain our results by applying pcf theory and citing some core model
theory. The reader can find the proofs for the facts we are going to cite in [19],
[5], [15], [6], or [17].

Before stating the results, we need some notation.

Notation: Hy, is the set of all hereditarily countable sets. Suppose that U
and U are both ultrafilters on x. Then we write U; < Uy iff Uy € ult(V, Uy),
where the latter is the ultrapower V* modulo U;. Mitchell [13] showed that <,
which is called the Mitchell order, is a well-founded partial order. The Mitchell
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order of an ultrafilter U, short o(U), is its rank in this well-founded partial order.
The Mitchell order of a cardinal &, o(x), is {o(U)|U is a free ultrafilter on }
(which is an ordinal).

Our notation follows [10] and [7] and [19], however, we do not presuppose the
knowledge of the notions from the latter: in Section 2 we shall recall the notions
from pcf theory ([19]) that we are going to use.

Now we are going to consider general syntactical forms of definitions of cardinal
invariants. The goal is to make first steps in drawing conclusions on how hard it
is to change the values of certain cardinal characteristics, just by looking at the
syntacs of the definition of the cardinal characteristic.

The most general invariants we are going to consider are of the form:

(1.1) inv, = min{|A|[AC Hy, A (Hy, € 4) F ¢}

for some first order formula ¢ in the language containing € and a unary pred-
icate symbol P, and such that (Hy,,€,A) E Vo Pr — ¢ and such that ¢ is
monotone in the unary predicate. The supscript V' indicates that the invariant is
computed in the universe V. All entries of Cichori’s Diagram (see, e.g., [1]) and
many other of the common cardinal characteristics have the form given by (1.1).

Suppose that we have some ¢ of the above form and that we have the following

constellation of evaluations:

Vi € V53 both models of ZFC,

and V; and V5 have the same cofinality function,

(<, 9)

and the same Hy,
and invf < invg1 .

Again in the Cichod’s Diagram, some examples for (<, ¢) have been obtained
(of course only consistently): In [12] such a scenario Vi, V; in constructed, with
same w-sequences, not only same Hy, in V; and in V5, where the bounding num-
ber, both additivities and both uniformities, and the covering number of the ideal
of meagre sets drop. The construction of the models is based upon some bare

set-theoretic premises. Here we show that these premises are not too strong from

the point of view of consistency strength.

If (<, ¢) holds for some universes V] and V3 and some cardinal 4, then we have

. Vl o V2
v, > f= v, > N;.
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So, looking at the witness A for the evaluation of the invariant in V; we get

Vi C V5 both are models of ZFC,
and V] and V; have the same cofinality function
and the same hereditarily countable sets,
()ovi.vs in V5, there is some set A C V; N 2%
of cardinality # that cannot be covered
by any set in V] of cardinality 6.
The symbol pp stands for pseudo power from pcf theory and will be explained

in the next section, where we shall prove:

Theorem 1.1. Let 8 be an uncountable cardinal.
Let V1, Vy be given. If 0 is minimal with (%)gv, v, then we have in V, there is
some K such that 2* > k > cf(k) = 6 and pp(k) > kt.

We conclude this section by discussing the impact of the theorem.

Remark on the reverse: As shown in the proof of [12, Theorem 7.1], (*)g.v; v;
can be obtained from the assumption 3k o(k) = kTT + wy. An intermediate
step in the forcing construction there is to get to a pair V3 C V, of models of
the conclusion of Theorem 1.1 together with covering above k and the additional

property, that V3 = Vi[G] for some P-generic G over V] and some P € 1].

Shelah proved an analogon of Silver’s result about cardinal exponentiation,
which shows that pseudo powers resemble powers:

Theorem 1.2. (Shelah [19, Theorem I1,2.4]) The minimum r such that r is
singular and ppcf(ﬁ)(/i) > kT has cofinality w.

The important result on consistency strengths that we are going to use is:

Theorem 1.3. (Gitik [5] for k > 2* and arbitrary cofinality, Mitchell [17] for
arbitrary x of cofinality w) The property “Ir > w (cf(k) = w A Ppeg( (k) > £T)7
has strength at least 3k o(k) = kT,

Putting 1.1, 1.2 and 1.3 together yields the corollary

Corollary 1.4. (x)gv, v, implies that in V, there is an inner model (namely

Mitchell’s K(F)) where 3 o(k) = x*T.
(Maybe such a x can be found even in V;. We need that K(F)"* = K(F)"

for certain pairs (V7,V2). The equation is true if V; is a forcing extension of V;
by a set-sized forcing.)
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We may conclude: Changing cardinal characteristics of the reals without chang-
ing cofinalities nor Hy, has consistency strength at least 3k o(x) = k1T and
hence has higher consistency strength than changing cardinal characteristics of
the reals without changing cardinalities nor w-sequences, where the upper bound
is o(k) = wy (for some procedure that is based upon a cofinality change). For
characteristics of the form

inv}iB =min{|A||AC Hy, AVe€ Bdye€ A (Hy,,€) Ev(z,y)}

for some ¢ € L(€) and some B C Hy, with transitive ¢ a change of cofinality
is necessary by [12, 1.4 and 1.5], where % is transitive if Va,y,z, ((¢(x,y) A
Y(y,z)) = ¥(x,2)). So, in this case, Ix o(k) = w; was known to be optimal. For
invariants of the general form (1.1), Theorem 1.4 shows that there is no procedure
without changing cardinalities nor w-sequences, of strength less than o(k) = wy.

2. PrROOF OF THEOREM 1.1

We shall need some of the most basic and most important definitions from pcf

theory [19] which we collect here for the reader’s convenience.

Products

Let a denote a set of regular cardinals such that |a] = ordertype(a) < mina.
Let (a; |t € |a|) be the increasing enumeration of a.

[[a={fIf: a—>Ua/\VaE a f(a) € a}.
This 1s often identified with

H,’e|a|ai ={flf:la| = Ua/\Vi € la] f(i) € a;}.

An ideal [ is a family of subsets of its domain, dom(]), closed under union and
subsets; usually [ is proper, i.e. dom(/) ¢ I.
For f,g € [] a and a proper ideal I on a we have the partial order

F<igiff {acal-fla) < gla)} € 1.

(This would make sense even if (|Ja, <) were only a partial order.) Of course,
the ideal I and the order can naturally be read as if they were living on the set
of functions on the set of indices {i |7 € |a|} (and we shall do so).
Cofinalities

The cofinality cf [Ja/J or cf(]] a, <), where .J is an ideal on a, is the minimal
power of a subset F of [] a such that for every g € [] a there is some f € F such
that ¢ <; f.



THE STRENGTHS OF SOME VIOLATIONS OF COVERING 5

The true cofinality, tcf [[a/J or tcf([] a, <), is well defined if we can choose
F as above being well-ordered by <; (the point is, that the order is linear), and
then the true cofinality is the cofinality of this linear order.

pcf(a) is the set {tcf [[a/J|J is a maximal ideal on a}.

Pseudo powers
For k a limit cardinal, and § < k I an ideal on 6, and I' a class of ideals, let

pp7(r) =sup{tcf([]; ori, <1) [ (ki |i < 8) is increasing and
ki = cf(k;) < kK = sup k; and
1<0
for each u < k,{i|K; < p} € I and
(ILicori> <1) has true cofinality};

so ppj(k) is undefined if for all choices of k; the true cofinality does not exist.

Next we recall
pp(k) =sup{ppj(x)|I C J and dom(/) = dom(.J)}.

Since for maximal ideals the reduced structure is an ultraproduct and linearly

ordered, pp;(x) is always defined. Finally we have

ppr(x) =sup{pp;(k) |3 < r dom(I) = 6 and I is an ideal in T'},
pp,(x) =ppr(x), for I' = {I|I is an ideal on some cardinal § < v},

pp(k) = PPcf(K)(’f)-

Again, ppr(x) might be undefined, depending on I'. However, the latter two
pseudo powers are always defined.
A frequently used class ' is (for some regular o”)

L =r(,q")

= {I| for some cardinal §; < #', I is a o’-complete proper ideal on 6}
A prominent role is played by the ideals

J!* = {B| B is a bounded subset of 6}.

Covering numbers
We assume that A > 6" >0 > 1,k > Xy, 6/ > 1, and

k> 0"V (kT =0 Acd#) < o).
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Then cov(\, k, 8, 0) is the first cardinal g such that there is a family P of u
subsets of A, each of cardinality < &, such that

Vt((tg)\ A <9’);»(373’)<73’g73 A|P|<o ANtC U A)).
AeP!
Later we will apply the covering numbers with #’ = §*. This is the end of the
definition part, and now we prove Theorem 1.1.
Proof of 1.1. Suppose that we have (%)gv, v,. We take £ minimal such that

there is in V; some witness A C «k for (%)gy,1,. Then we have that in V5,
k> cf(k) =6 = |A], A is cofinal in k. We claim that in V;

pPr(e+ oy (r) = pp(K) > K7

In order to prove the claim, we shall modify the proof of the following special
case of [19, Chapter II, Theorem 4.5(1), harder inequality], the so-called “cov
versus pp Theorem”. For A > k > 0" > 0 > wy, o regular, the harder inequality
says

cov(\,k,0,0)+ ) <

2.1
(2.1) SUp{PPr(gr o) (A7) [ A" € [K, A] and o < cf (A7) < 0} 4 A

The modification is as follows: we do not start from a from the covering number
on the left-hand side but from the premise given by (x)g v, vs-

We apply the above inequality (2.1) in the special case of cf(k) =0 < k = A,
and o = 6, ¥ = #*. Since the left-hand summands on both sides are > «,
the addition of A to each side does not matter. By (*)s1, v, and by the fact
that § > R, is regular, , we have that P = {A|A C &, A € W,|A| < &}
does not cover {A|A C k,A € V,,|A| = 6} in the sense of cov(k,x,8,0)"
and hence can be used like the P in Shelah’s original proof. So x* < |P| <
|P|t =: n < cov(k, k,0%,0)"2 and we are to show that the right hand side of the
inequality (2.1) is greater than or equal to pu, i.e. for some I € I'(f,0) and for
some (A, | o € dom(I)) we have that

tlim;( Ay | € dom(])) = &, and
tef ([ [Ma, <1) > po

Since P is not a witness for the computation of cov(k, x,8%,5)"2, in V;, there
is some 6* € [0,6%) and a function

80—k

such that =3¢* < o, A¢ € P, ( < ¢ such that range(f*) C [, .- A¢-
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Now we can just continue as in Shelah’s proof of [19, Chapter II, Theorem

5.4(1), page 89 ff.]. So we have that in V5,

pp(k) = [P|" = &7

3. A STRONGER VIOLATION OF COVERING

In this section we consider another situation of violation of covering, which
appears at an intermediate step in the construction from [12]. It is not known
whether such a constellation is necessarily connected with the change of cardinal
charactersistics from the former sections. We look at the covering properties of

the pair (17, V2) in the following diagram of ZFC-models.

Vi = WG] —— Vi = 1[G

T T

V —— Vi — Vy —— Vi

Diagram 1

The arrows in the diagram denote inclusion.
The V; are the models witnessing a change in cardinal characteristics as in
Sections one and two. The V; are the models used as the starting points of the

forcing in [12], the ones with the following violation of covering:

Vi € V5 both are models of ZFC,
and V] and V; have the same cofinality function

and the same w-sequences in k > 2,

(45 ).0,v1. 75 . .
in V5, there is some set A C &,

of cardinality § > w, A cofinal in &,

that cannot be covered by any set in V; of cardinality 4.

The outer models V and VFeiix are the classical “non SCH at an uncountable
cofinality” models. The consistency strength to obtain them is almost pinned
down by work of Gitik, Mitchell [6], and Woodin, namely between o(x) = x+7
and o(k) = kTt + cf"2(k), and for f'?(k) > R, it coincides with the upper
bound.
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Now we use a modification of a Theorem of [6, 3.1]. It is not known whether
the following works for violations of covering of sets A cofinal in some x < 2¢.

Theorem 3.1. Let 8 be an uncountable cardinal.
Let V1, V3 be given. If k is minimal with (xx)g . v, v, and k > 2¥, then we have
k> clf(k) =46, and
there is some cardinal p and there is a sequence a C p of reqular cardinals,
cofinal in p, with cf(p) <0 and otp(a) = |a| = 6, such that

(1) tcf(Ua/Jb?) > ptt, and
(2) Any strictly increasing sequence from Ila of length less than tcf(Ila/Jb?) and
cofinality greater than 2° has a least upper bound.

Proof. For (1) we claim: Suppose (#%)g,. v, v, and £ is minimal such that for
Vi, Va2, 60 the property (#%)g,.v, v, holds. Under the premises of Theorem 3.1,
there are a singular cardinal p and an increasing sequence (p, |1 < ) of regular

cardinals such that the sequence is cofinal in p and such that

th(Hpi7 <Jgd) > 10++'
The claim comes from page 311 of [19], where we have
If p> 6> cf(p) >Ry and
Vi < p large enough of cf(r) < 6 we have that ppy(r) < p,
then we have that
@, (@)Vregular v € (p,ppj (p))
there is a sequence (p; |1 < cf(p)) of regular cardinals < p with limit p
such that tcf(Hpi/Jf&p)) =7, SO
(B) ppolp) = ppcf(p)(p) = PP*Jbed(p) (p)-
We use that we have ®; with 8 being our # and p = min{x | ppy(r) > &t A
cf(k) < 6}.
Now, heading for (2) of 3.1, we shall continue to free-load, this time in [19,
Chapter II §1]. The statement (2) is one of the three possibilities in the so-called

Shelah-trichotomy [19, Chapter II §1]. Since the other two possibilities therein
are excluded by the remark following [19, Chapter II §1], (2) is true. Os1

Theorem 3.2 (Gitik, Mitchell [6]). Let 8 be a regular uncountable cardinal. The
strength of “x cf(k) = 8 < k and K is a strong limit and 2% > k%7 is
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(a) between Ik o(k) = k1T and Ik o(k) = kT 4wy for 6 = wy,

(b) Fro(k) =kt 40 for § > w,.

Gitik and Mitchell derive the consistency strength in the conclusion of their
theorem from (1) and (2) in Theorem 3.1. So they actually proved

Theorem 3.3 (Modification of Gitik, Mitchell). Let 6 be a regular uncountable
cardinal. The strength of the conclusions (1) and (2) of Theorem 3.1 and 2° < x
15

(a) between o(k) = k1T and o(k) = k1T + wy for § = wy,

(b) o(k) =kt 48 for 8 > w,.

Proof. Section 3 of [6] shows that only (b) (1) and (2) are used as a premise. g4

So, the forcing construction from [12, Section 7] and 3.1, 3.2, and 3.3 together
yield:

Corollary 3.4. For 8 > wy; we have “there is an inner model Vi such that
(#%)g.5.v1 v, and cf(0) > Ry ” has the same consistency strength as: in Vs there is
an inner model with Ik cf(k) = 0 < k and K is a strong limit and 2" > k*.

We do not know whether in the case of § = w; the analogous coincidence is
true.

Remark. We may get the strength also in V) if V5 is only a set-generic extension
of V1, see the core model-theoretic technique in [2], which has to be extended to

the models in [3, 14, 16, 8, 9], [18, 20].

Remark 3.5. Suppose that we have o(k) = w; (and not higher). Under this
premise Gitik [4] builds a model V such that in V' & is inaccessible and there
_l_

is a rT-c.c. forcing P that does not add new bounded subsets of £ (so P is

p-distributive for all 4 < k) and such that in V7, cf (k) = wy.

Let {k; |7 € w;) € VP be a sequence cofinal in &.

We set Vi = V[(kai |t € w1)]. Then (kg |i € wy) is P generic for some complete
suborder Py of P by [7]. Vi does not have any new bounded subsets of k because
V¥ does not have any new bounded subsets of «.

Now at first sight two cases are possible:

First case: {k;|i € w1} is covered by some set in V] of size < k.

Second case: {k;|i € wy} is not covered by any set in Vj of size < k. From the
proof of 1.1 we get in this case that pp(x) > wtt in V' = V. Now the Main
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Theorem of [5] says: (k > 2“ Ak singular A pp(k) > &) implies that there is
an inner model of Ja o(a) > att.

Since we do not have this high consistency strength, the second case is excluded.
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