
THE STRENGTHS OF SOME VIOLATIONS OF COVERINGHEIKE MILDENBERGERAbstra
t. We show that in order to get V1 � V2 two models of ZFC withthe same 
o�nality fun
tion and the same !-sequen
es and some set in V2 notbeing 
overed by any set in V1 of the same 
ardinality an inner model of V2 ameasurable 
ardinal � of Mit
hell order �++ is ne
essary.We show that 
hanging 
ardinal 
hara
teristi
s without 
hanging 
o�nal-ities or !-sequen
es (whi
h was done for some 
hara
teristi
s in [12℄) has
onsisten
y strength at least o(�) = �++.From this we get that the 
hanging of 
ardinal 
hara
teristi
s without 
hang-ing 
ardinals or !-sequen
es has 
onsisten
y strength o(�) = !1, even in the
ase of 
hara
teristi
s that do not stem from a transitive relation. Hen
e theknown for
ing 
onstru
tions for su
h a 
hange have lowest possible 
onsisten
ystrength.We 
onsider some stronger violations of 
overing whi
h have appeared asintermediate steps in for
ing 
onstru
tions.1. Introdu
tionWe are going to prove the results listed in the abstra
t and some equi
onsistentformulations in terms of pseudo powers and possible 
o�nalities. This gives somebounds on the 
onsisten
y stengths of the 
onstellations obtained in [11℄ and in[12℄.We shall obtain our results by applying p
f theory and 
iting some 
ore modeltheory. The reader 
an �nd the proofs for the fa
ts we are going to 
ite in [19℄,[5℄, [15℄, [6℄, or [17℄.Before stating the results, we need some notation.Notation: H�1 is the set of all hereditarily 
ountable sets. Suppose that U1and U2 are both ultra�lters on �. Then we write U1 C U2 i� U1 2 ult(V;U2),where the latter is the ultrapower V � modulo U2. Mit
hell [13℄ showed that C,whi
h is 
alled the Mit
hell order, is a well-founded partial order. The Mit
hellDate: August 26, 1999.1991 Mathemati
s Subje
t Classi�
ation. 03E35, 03E55.Key words and phrases. p
f theory, pseudo power, 
overing, large 
ardinals.The author was partially supported by a Lise Meitner Fellowship of the State of North RhineWestphalia and by a Minerva fellowship. 1



2 HEIKE MILDENBERGERorder of an ultra�lter U , short o(U), is its rank in this well-founded partial order.The Mit
hell order of a 
ardinal �, o(�), is fo(U) jU is a free ultra�lter on �g(whi
h is an ordinal).Our notation follows [10℄ and [7℄ and [19℄, however, we do not presuppose theknowledge of the notions from the latter: in Se
tion 2 we shall re
all the notionsfrom p
f theory ([19℄) that we are going to use.Now we are going to 
onsider general synta
ti
al forms of de�nitions of 
ardinalinvariants. The goal is to make �rst steps in drawing 
on
lusions on how hard itis to 
hange the values of 
ertain 
ardinal 
hara
teristi
s, just by looking at thesynta
s of the de�nition of the 
ardinal 
hara
teristi
.The most general invariants we are going to 
onsider are of the form:invV� = minfjAj jA � H�1 ^ (H�1;2; A) j= �g(1.1)for some �rst order formula � in the language 
ontaining 2 and a unary pred-i
ate symbol P , and su
h that (H�1;2; A) j= 8x Px ! � and su
h that � ismonotone in the unary predi
ate. The sups
ript V indi
ates that the invariant is
omputed in the universe V . All entries of Ci
ho�n's Diagram (see, e.g., [1℄) andmany other of the 
ommon 
ardinal 
hara
teristi
s have the form given by (1.1).Suppose that we have some � of the above form and that we have the following
onstellation of evaluations:V1 � V2 both models of ZFC;and V1 and V2 have the same 
o�nality fun
tion,and the same H�1and invV2� < invV1� :(<;�)Again in the Ci
ho�n's Diagram, some examples for (<;�) have been obtained(of 
ourse only 
onsistently): In [12℄ su
h a s
enario V1, V2 in 
onstru
ted, withsame !-sequen
es, not only same H�1 in V1 and in V2, where the bounding num-ber, both additivities and both uniformities, and the 
overing number of the idealof meagre sets drop. The 
onstru
tion of the models is based upon some bareset-theoreti
 premises. Here we show that these premises are not too strong fromthe point of view of 
onsisten
y strength.If (<;�) holds for some universes V1 and V2 and some 
ardinal �, then we haveinvV1� > � = invV2� � �1:



THE STRENGTHS OF SOME VIOLATIONS OF COVERING 3So, looking at the witness A for the evaluation of the invariant in V2 we getV1 � V2 both are models of ZFC;and V1 and V2 have the same 
o�nality fun
tionand the same hereditarily 
ountable sets,in V2, there is some set A � V1 \ 2!of 
ardinality � that 
annot be 
overedby any set in V1 of 
ardinality �.(�)�;V1;V2The symbol pp stands for pseudo power from p
f theory and will be explainedin the next se
tion, where we shall prove:Theorem 1.1. Let � be an un
ountable 
ardinal.Let V1; V2 be given. If � is minimal with (�)�;V1;V2 then we have in V2 there issome � su
h that 2! � � > 
f(�) = � and pp(�) > �+.We 
on
lude this se
tion by dis
ussing the impa
t of the theorem.Remark on the reverse: As shown in the proof of [12, Theorem 7.1℄, (�)�;V1;V2
an be obtained from the assumption 9� o(�) = �++ + !1. An intermediatestep in the for
ing 
onstru
tion there is to get to a pair V1 � V2 of models ofthe 
on
lusion of Theorem 1.1 together with 
overing above � and the additionalproperty, that V2 = V1[G℄ for some P -generi
 G over V1 and some P 2 V1.Shelah proved an analogon of Silver's result about 
ardinal exponentiation,whi
h shows that pseudo powers resemble powers:Theorem 1.2. (Shelah [19, Theorem II,2.4℄) The minimum � su
h that � issingular and pp
f(�)(�) > �+ has 
o�nality !.The important result on 
onsisten
y strengths that we are going to use is:Theorem 1.3. (Gitik [5℄ for � > 2! and arbitrary 
o�nality, Mit
hell [17℄ forarbitrary � of 
o�nality !) The property \9� > ! (
f(�) = ! ^ pp
f(�)(�) > �+)"has strength at least 9� o(�) = �++.Putting 1.1, 1.2 and 1.3 together yields the 
orollaryCorollary 1.4. (�)�;V1;V2 implies that in V2 there is an inner model (namelyMit
hell's K(F)) where 9� o(�) = �++.(Maybe su
h a � 
an be found even in V1. We need that K(F)V1 = K(F)V2for 
ertain pairs (V1; V2). The equation is true if V2 is a for
ing extension of V1by a set-sized for
ing.)



4 HEIKE MILDENBERGERWemay 
on
lude: Changing 
ardinal 
hara
teristi
s of the reals without 
hang-ing 
o�nalities nor H�1 has 
onsisten
y strength at least 9� o(�) = �++ andhen
e has higher 
onsisten
y strength than 
hanging 
ardinal 
hara
teristi
s ofthe reals without 
hanging 
ardinalities nor !-sequen
es, where the upper boundis o(�) = !1 (for some pro
edure that is based upon a 
o�nality 
hange). For
hara
teristi
s of the forminvV ;B = minfjAj jA � H�1 ^ 8x 2 B 9y 2 A (H�1;2) j=  (x; y)gfor some  2 L(2) and some B � H�1 with transitive  a 
hange of 
o�nalityis ne
essary by [12, 1.4 and 1.5℄, where  is transitive if 8x; y; z; (( (x; y) ^ (y; z))!  (x; z)). So, in this 
ase, 9� o(�) = !1 was known to be optimal. Forinvariants of the general form (1.1), Theorem 1.4 shows that there is no pro
edurewithout 
hanging 
ardinalities nor !-sequen
es, of strength less than o(�) = !1.2. Proof of Theorem 1.1We shall need some of the most basi
 and most important de�nitions from p
ftheory [19℄ whi
h we 
olle
t here for the reader's 
onvenien
e.Produ
tsLet a denote a set of regular 
ardinals su
h that jaj = ordertype(a) < mina.Let hai j i 2 jaji be the in
reasing enumeration of a.Qa = ff j f : a![ a ^ 8a 2 a f(a) 2 ag:This is often identi�ed withQi2jajai = ff j f : jaj ![ a ^ 8i 2 jaj f(i) 2 aig:An ideal I is a family of subsets of its domain, dom(I), 
losed under union andsubsets; usually I is proper, i.e. dom(I) 62 I.For f; g 2Q a and a proper ideal I on a we have the partial orderf �I g i� fa 2 a j :f(a) � g(a)g 2 I:(This would make sense even if (S a;�) were only a partial order.) Of 
ourse,the ideal I and the order 
an naturally be read as if they were living on the setof fun
tions on the set of indi
es fi j i 2 jajg (and we shall do so).Co�nalitiesThe 
o�nality 
fQ a=J or 
f(Q a; <J), where J is an ideal on a, is the minimalpower of a subset F of Q a su
h that for every g 2Q a there is some f 2 F su
hthat g �J f .



THE STRENGTHS OF SOME VIOLATIONS OF COVERING 5The true 
o�nality, t
fQ a=J or t
f(Q a; <J), is well de�ned if we 
an 
hooseF as above being well-ordered by �J (the point is, that the order is linear), andthen the true 
o�nality is the 
o�nality of this linear order.p
f(a) is the set ft
fQ a=J jJ is a maximal ideal on ag.Pseudo powersFor � a limit 
ardinal, and � < � I an ideal on �, and � a 
lass of ideals, letpp�I(�) = supft
f(Qi<��i; <I) j h�i j i < �i is in
reasing and�i = 
f(�i) < � = supi<� �i andfor ea
h � < �; fi j�i < �g 2 I and(Qi<��i; <I) has true 
o�nalityg;so pp�I(�) is unde�ned if for all 
hoi
es of �i the true 
o�nality does not exist.Next we re
allppI(�) = supfpp�J (�) j I � J and dom(I) = dom(J)g:Sin
e for maximal ideals the redu
ed stru
ture is an ultraprodu
t and linearlyordered, ppI(�) is always de�ned. Finally we havepp�(�) = supfpp�I(�) j 9� � � dom(I) = � and I is an ideal in �g;pp
(�) = pp�(�); for � = fI j I is an ideal on some 
ardinal � � 
g;pp(�) = pp
f(�)(�):Again, pp�(�) might be unde�ned, depending on �. However, the latter twopseudo powers are always de�ned.A frequently used 
lass � is (for some regular �0)� = �(�0; �0)= fI j for some 
ardinal �I < �0; I is a �0-
omplete proper ideal on �IgA prominent rôle is played by the idealsJ bd� = fB jB is a bounded subset of �g:Covering numbersWe assume that � � �0 � � > 1, � � �0, �0 > 1, and� � �0 _ (�+ = �0 ^ 
f(�0) < �):



6 HEIKE MILDENBERGERThen 
ov(�; �; �0; �) is the �rst 
ardinal � su
h that there is a family P of �subsets of �, ea
h of 
ardinality < �, su
h that8t�(t � � ^ jtj < �0)) (9P 0)�P 0 � P ^ jP 0j < � ^ t � [A2P 0A��:Later we will apply the 
overing numbers with �0 = �+. This is the end of thede�nition part, and now we prove Theorem 1.1.Proof of 1.1. Suppose that we have (�)�;V1;V2. We take � minimal su
h thatthere is in V2 some witness A � � for (�)�;V1;V2. Then we have that in V2,� > 
f(�) = � = jAj, A is 
o�nal in �. We 
laim that in V2pp�(�+;�)(�) = pp(�) > �+:In order to prove the 
laim, we shall modify the proof of the following spe
ial
ase of [19, Chapter II, Theorem 4.5(1), harder inequality℄, the so-
alled \
ovversus pp Theorem". For � � � � �0 > � � !1, � regular, the harder inequalitysays 
ov(�; �; �0; �) + � �supfpp�(�0 ;�)(��) j�� 2 [�; �℄ and � � 
f(��) < �0g+ �:(2.1)The modi�
ation is as follows: we do not start from a from the 
overing numberon the left-hand side but from the premise given by (�)�;V1;V2.We apply the above inequality (2.1) in the spe
ial 
ase of 
f(�) = � < � = �,and � = �, �0 = �+. Sin
e the left-hand summands on both sides are � �,the addition of � to ea
h side does not matter. By (�)�;V1;V2 and by the fa
tthat � � �1 is regular, , we have that P = fA jA � �;A 2 V1; jAj < �gdoes not 
over fA jA � �;A 2 V2; jAj = �g in the sense of 
ov(�; �; �+; �)V2and hen
e 
an be used like the P in Shelah's original proof. So �+ � jPj <jPj+ =: � � 
ov(�; �; �+; �)V2 and we are to show that the right hand side of theinequality (2.1) is greater than or equal to �, i.e. for some I 2 �(�; �) and forsome h�� j� 2 dom(I)i we have thattlimIh�� j� 2 dom(I)i = �; andt
f(Q��; <I) � �:Sin
e P is not a witness for the 
omputation of 
ov(�; �; �+; �)V2, in V2 thereis some �� 2 [�; �+) and a fun
tionf� : �� ! �su
h that :9�� < �; A� 2 P; � < �� su
h that range(f�) � S�<�� A�.



THE STRENGTHS OF SOME VIOLATIONS OF COVERING 7Now we 
an just 
ontinue as in Shelah's proof of [19, Chapter II, Theorem5.4(1), page 89 �.℄. So we have that in V2,pp(�) � jPj+ � �++: �1:13. A stronger violation of 
overingIn this se
tion we 
onsider another situation of violation of 
overing, whi
happears at an intermediate step in the 
onstru
tion from [12℄. It is not knownwhether su
h a 
onstellation is ne
essarily 
onne
ted with the 
hange of 
ardinal
hara
tersisti
s from the former se
tions. We look at the 
overing properties ofthe pair (V1; V2) in the following diagram of ZFC-models.~V1 = V1[G℄ ���! ~V2 = V2[G℄x?? x??V ���! V1 ���! V2 ���! V PGitikDiagram 1The arrows in the diagram denote in
lusion.The ~Vi are the models witnessing a 
hange in 
ardinal 
hara
teristi
s as inSe
tions one and two. The Vi are the models used as the starting points of thefor
ing in [12℄, the ones with the following violation of 
overing:V1 � V2 both are models of ZFC;and V1 and V2 have the same 
o�nality fun
tionand the same !-sequen
es in � > 2!,in V2, there is some set A � �,of 
ardinality � > !, A 
o�nal in �,that 
annot be 
overed by any set in V1 of 
ardinality �.(��)�;�;V1;V2The outer models V and V PGitik are the 
lassi
al \non SCH at an un
ountable
o�nality" models. The 
onsisten
y strength to obtain them is almost pinneddown by work of Gitik, Mit
hell [6℄, and Woodin, namely between o(�) = �++and o(�) = �++ + 
fV2(�), and for 
fV2(�) � �2 it 
oin
ides with the upperbound.



8 HEIKE MILDENBERGERNow we use a modi�
ation of a Theorem of [6, 3.1℄. It is not known whetherthe following works for violations of 
overing of sets A 
o�nal in some � � 2!.Theorem 3.1. Let � be an un
ountable 
ardinal.Let V1; V2 be given. If � is minimal with (��)�;�;V1;V2 and � > 2!, then we havein V2:� > 
f(�) = �, andthere is some 
ardinal � and there is a sequen
e a � � of regular 
ardinals,
o�nal in �, with 
f(�) � � and otp(a) = jaj = �, su
h that(1) t
f(�a=J bd� ) � �++, and(2) Any stri
tly in
reasing sequen
e from �a of length less than t
f(�a=J bd� ) and
o�nality greater than 2� has a least upper bound.Proof. For (1) we 
laim: Suppose (��)�;�;V1;V2 and � is minimal su
h that forV1; V2; � the property (��)�;�;V1;V2 holds. Under the premises of Theorem 3.1,there are a singular 
ardinal � and an in
reasing sequen
e h�i j i < �i of regular
ardinals su
h that the sequen
e is 
o�nal in � and su
h thatt
f(Q�i; <Jbd� ) � �++:The 
laim 
omes from page 311 of [19℄, where we haveIf � > � � 
f(�) > �0 and8� < � large enough of 
f(�) � � we have that pp�(�) < �;then we have that(�) 8 regular 
 2 (�;pp+� (�))there is a sequen
e h�i j i < 
f(�)i of regular 
ardinals < � with limit �su
h that t
f(Q�i=J bd
f(�)) = 
; so(�) pp�(�) = pp
f(�)(�) = pp�Jbd
f(�)(�):
1We use that we have 
1 with � being our � and � = minf� j pp�(�) > �+ ^
f(�) � �g.Now, heading for (2) of 3.1, we shall 
ontinue to free-load, this time in [19,Chapter II x1℄. The statement (2) is one of the three possibilities in the so-
alledShelah-tri
hotomy [19, Chapter II x1℄. Sin
e the other two possibilities thereinare ex
luded by the remark following [19, Chapter II x1℄, (2) is true. �3:1Theorem 3.2 (Gitik, Mit
hell [6℄). Let � be a regular un
ountable 
ardinal. Thestrength of \9� 
f(�) = � < � and � is a strong limit and 2� > �+" is



THE STRENGTHS OF SOME VIOLATIONS OF COVERING 9(a) between 9� o(�) = �++ and 9� o(�) = �++ + !1 for � = !1,(b) 9� o(�) = �++ + � for � � !2.Gitik and Mit
hell derive the 
onsisten
y strength in the 
on
lusion of theirtheorem from (1) and (2) in Theorem 3.1. So they a
tually provedTheorem 3.3 (Modi�
ation of Gitik, Mit
hell). Let � be a regular un
ountable
ardinal. The strength of the 
on
lusions (1) and (2) of Theorem 3.1 and 2� � �is(a) between o(�) = �++ and o(�) = �++ + !1 for � = !1,(b) o(�) = �++ + � for � � !2.Proof. Se
tion 3 of [6℄ shows that only (b) (1) and (2) are used as a premise. �3:4So, the for
ing 
onstru
tion from [12, Se
tion 7℄ and 3.1, 3.2, and 3.3 togetheryield:Corollary 3.4. For � � !2 we have \there is an inner model V1 su
h that(��)�;�;V1;V2 and 
f(�) � �2" has the same 
onsisten
y strength as: in V2 there isan inner model with 9� 
f(�) = � < � and � is a strong limit and 2� > �+.We do not know whether in the 
ase of � = !1 the analogous 
oin
iden
e istrue.Remark. We may get the strength also in V1 if V2 is only a set-generi
 extensionof V1, see the 
ore model-theoreti
 te
hnique in [2℄, whi
h has to be extended tothe models in [3, 14, 16, 8, 9℄, [18, 20℄.Remark 3.5. Suppose that we have o(�) = !1 (and not higher). Under thispremise Gitik [4℄ builds a model V su
h that in V � is ina

essible and thereis a �+-
.
. for
ing P that does not add new bounded subsets of � (so P is�-distributive for all � < �) and su
h that in V P , 
f(�) = !1.Let h�i j i 2 !1i 2 V P be a sequen
e 
o�nal in �.We set V1 = V [h�2i j i 2 !1i℄. Then h�2i j i 2 !1i is P1 generi
 for some 
ompletesuborder P1 of P by [7℄. V1 does not have any new bounded subsets of � be
auseV P does not have any new bounded subsets of �.Now at �rst sight two 
ases are possible:First 
ase: f�i j i 2 !1g is 
overed by some set in V1 of size < �.Se
ond 
ase: f�i j i 2 !1g is not 
overed by any set in V1 of size < �. From theproof of 1.1 we get in this 
ase that pp(�) � �++ in V P11 = V P . Now the Main



10 HEIKE MILDENBERGERTheorem of [5℄ says: (� > 2! ^ � singular ^ pp(�) � �++) implies that there isan inner model of 9� o(�) � �++.Sin
e we do not have this high 
onsisten
y strength, the se
ond 
ase is ex
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