Abteilung für Mathematische Logik

Heike Mildenberger Giorgio Laguzzi

Mathematische Logik

Sommersemester 2020 Übungsblatt 1, 12.5.2020

Abgabe spätestens am 19.5.2020 um 12:00 Uhr als pdf-Datei per E-Mail an: hannes.jakob@pluto.uni-freiburg.de $^{\rm 1}$

1. Sei $S = \{0, 1, \boxplus, \circ, P, \lhd\}$; dabei seien 0, 1 Konstantenzeichen, \boxplus, \circ zweistellige Funktionszeichen und P ein einstelliges und \lhd ein zweistelliges Relationszeichen. Wir betrachten die natürlichen Zahlen \mathbb{N} als S-Struktur \mathfrak{N} , indem wir die Zeichen wie folgt interpretieren:

$$0^{\mathfrak{N}} = 0$$
, $1^{\mathfrak{N}} = 1$, $\mathbb{H}^{\mathfrak{N}} = +$, $0^{\mathfrak{N}} = \cdot$, $P^{\mathfrak{N}} = \{p \in \mathbb{N} \mid p \text{ ist Primzahl}\}$, $\triangleleft^{\mathfrak{N}} = <$

Drücken Sie folgende Aussagen als S-Formeln aus:

- a) Nicht alle natürlichen Zahlen sind Primzahlen.
- b) Zu jeder Primzahl gibt es eine größere.
- c) Es gibt unendlich viele Primzahlen.
- d) Es gibt genau eine gerade Primzahl.
- i) Gilt $\mathfrak{N} \models \forall x \forall y \exists z \exists v \exists w (z = x \boxplus v \land y = z \boxplus w))$?
- ii) Gilt $\mathfrak{N} \models \forall x \forall y \exists z \exists v \exists w ((z = x \boxplus v \land y = z \boxplus w)) \lor (z = y \boxplus w \land x = z \boxplus w))$?
- **2.** Wir definieren die Menge der K-Terme über $\{[,]\}$ durch folgende Regeln:
 - (i) Das Wort [] ist ein K-Term.
 - (ii) Falls v, w K-Terme sind, so ist [vw] ein K-Term.
 - (a) Ist das Wort [][] ein K-Term? Begründen Sie Ihre Antwort.
 - (b) Wir definieren F: Menge der K-Terme $\to \mathbb{N}$ durch folgende Regeln:

$$F([\]) := 1$$

$$F([vw]) := 1 + \max\{F(v), F(w)\}.$$

Ist die Funktion F wohldefiniert?

Bitte wenden.

¹Leider war diese Adresse in der Begrüßungsmail vom 9.5.2020 falsch geschrieben.

- 3. Seien \mathfrak{A} eine L-Struktur und B eine nicht leere Teilmenge von A. Die Menge B enthalte die Interpretationen $c^{\mathfrak{A}}$ aller Konstanten und sei unter allen Funktionen $f^{\mathfrak{A}}$ abgeschlossen. Wenn man die Interpretation der Zeichen aus L auf B einschränkt, erhält man eine L-Struktur \mathfrak{B} . Die L-Struktur \mathfrak{B} heißt eine $Unterstruktur von \mathfrak{A}$.
 - (a) Ist der Durchschnitt einer Familie von Unterstrukturen von \mathfrak{A} , falls er nicht leer ist, wieder eine Unterstruktur?
 - Aus einer positiven Antwort würde folgen, dass jede nicht leere Teilmenge S von A in einer kleinsten Unterstruktur von $\mathfrak A$ (als Teilmenge) enthalten ist, der von S erzeugten Unterstruktur.
 - (b) Kann man das gleiche über die Vereinigung sagen? Beweisen Sie die analogen Aussagen oder geben Sie ein Gegenbeispiel.
- **4.** Sei die *lexikographische Ordnung* auf $\mathbb{N} \times \mathbb{N}$ definiert durch

$$(n, m) <_{\text{lex}} (n', m')$$
, wenn $n < n' \text{ oder } (n = n' \text{ und } m < m')$.

- (a) Ist $(\mathbb{N} \times \mathbb{N}, <_{\text{lex}})$ eine lineare Ordnung?
- (b) Lesen Sie die Definition der Isomorphierelation \cong im Skript. Ist $(\mathbb{N}, <) \cong (\mathbb{N} \times \mathbb{N}, <_{\text{lex}})$?
- (c) Gibt es eine Ordnung \triangleleft auf $\mathbb{N} \times \mathbb{N}$, so dass $(\mathbb{N}, <)$ und $(\mathbb{N} \times \mathbb{N}, \triangleleft)$ isomorphe L-Strukturen sind? Falls Sie bejahen, geben Sie bitte eine Ordnung an.