BLATT 05 20.05.2025

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: Dr. Hannes Jakob

Abgabe am Dienstag, 27.05.2025, um 10:15 vor der Vorlesung oder im Briefkasten im Logik-Flur

Aufgabe 1. Wir beweisen das "d.h." in Definition 4.11. Konkret: Es seien X eine Menge und \mathcal{U} ein Filter über X. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- 1. $\mathscr U$ ist \subseteq -maximal unter den Filtern, d.h. für jeden Filter $\mathscr F\supseteq\mathscr W$ gilt $\mathscr F=\mathscr U$.
- 2. Für jede Teilmenge $A \subseteq X$ gilt $A \in \mathcal{U}$ oder $X \setminus A \in \mathcal{U}$.

Aufgabe 2. Finden Sie einen topologischen Raum (X, \mathcal{O}) und eine Teilmenge $A \subseteq X \times X$, sodass A nicht abgeschlossen ist (bzgl. der Produkttopologie), aber jede Sektion $A_x := \{y \in X \mid (x, y) \in A\}$ (für $x \in X$) abgeschlossen ist?

Aufgabe 3 (6 Punkte). Es seien X, Y topologische Räume und $f: X \to Y$ eine Abbildung. Wenn \mathcal{F} ein Filter über X ist, so setzen wir den "push forward von \mathcal{F} auf Y mittels f" als

$$f_*(\mathcal{F}) := \{ A \subseteq Y \mid f^{-1}[A] \in \mathcal{F} \}.$$

Zeigen Sie:

- 1. Wenn \mathscr{U} ein Ultrafilter über X ist, dann ist $f_*(\mathscr{U})$ ein Ultrafilter über Y. **Hinweis:** Benutzen Sie Charakterisierung (2) aus Aufgabe 1.
- 2. Wenn $x \in X$ und f stetig in x ist, dann gilt für jeden Filter \mathcal{F} über X: Wenn $\mathcal{F} \to x$, so folgt $f_*(\mathcal{F}) \to f(x)$.
- 3. Wenn $x \in X$, dann gilt: Wenn für jeden Filter \mathcal{F} über x gilt, dass aus $\mathcal{F} \to x$ folgt, dass $f_*(\mathcal{F}) \to f(x)$, dann ist f stetig in x.

Es sei $(x_n)_{n\in\mathbb{N}}$ eine Folge von Elementen von X. Wir setzen

$$\mathcal{F} := \{ A \subseteq X \mid \exists k \in \mathbb{N}, \forall n \ge k, x_n \in A \}.$$

Zeigen Sie:

- 4. \mathcal{F} ist ein Filter.
- 5. Wenn $x \in X$ ein Häufungspunkt der Folge $(x_n)_{n \in \mathbb{N}}$ ist, dann ist x ein Berührpunkt von \mathcal{F} .
- 6. Wenn $x \in X$ ein Berührpunkt von \mathcal{F} ist, dann ist x ein Häufungspunkt der Folge $(x_n)_{n \in \mathbb{N}}$.

Topologie Sommersemester 2025

Aufgabe 4 (2 Punkte). Finden Sie einen topologischen Raum (X, \mathcal{O}) derart, dass \mathcal{O} nicht der Summentopologie der disjunkten Vereinigung der Zusammenhangskomponenten entspricht?

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: Dr. Hannes Jakob

Bonus-Aufgabe. Es sei $(\mathbb{R}, \mathscr{O}_S)$ die Sorgenfrey-Gerade (siehe die Bonusaufgabe auf Blatt 2). Gibt es eine Teilmenge $A \subseteq \mathbb{R}^2$, die diskret bzgl. der Produkttopologie von \mathscr{O}_S und gleichmächtig zu \mathbb{R} ist?

Dies steht natürlich im Kontrast zu der Aussage (die in der Lösung der Bonusaufgabe auf Blatt 2 bewiesen wurde), dass es keine überabzählbare Teilmenge $A \subseteq \mathbb{R}$ gibt, die diskret bzgl. \mathscr{O}_S ist. Außerdem gibt es keine überabzählbare Teilmenge $A \subseteq \mathbb{R}^2$, die diskret bzgl. der metrischen Topologie ist.