Mengenlehre: Unabhängigkeitsbeweise Dozentin: Prof. Dr. Heike Mildenberger WS 2018/19 Assistent: M. Sc. Brendan Stuber-Rousselle

Übungen

Blatt 12

Abgabe am 22.01.2019 vor 10 Uhr

Wir definieren das $random\ Forcing^1$ $\mathbb B$ wie folgt: Sei λ das Lebesgue-Maß auf dem reellen Intervall [0,1]. Für eine Borelmenge $a\subseteq [0,1]$ setzen wir $[a]_{\approx}:=\{b\subseteq [0,1]: b\ Borel \wedge \lambda(a\triangle b)=0\}$. Betrachten Sie

$$\mathbb{B} := \{ [a]_{\approx} : a \subseteq [0,1] \text{ Borel}, \lambda(a) > 0 \}$$

zusammen mit der Ordnung $[a]_{\approx} \leq_{\mathbb{B}} [b]_{\approx} :\Leftrightarrow \lambda(a \setminus b) = 0$. Dass das random Forcing wohldefiniert ist, folgt aus den Aufgaben 2 und 3 von Blatt 11.

Aufgabe 1. Sei M ein ctm und G ein \mathbb{B} -generischer Filter über M. Wir schreiben $\operatorname{cl}(a)$ für den Abschluss von a in der üblichen Topologie auf dem Intervall [0,1]. Zeigen Sie:

- i) $\bigcap \{ cl(a) : [a]_{\approx} \in G \}$ ist nicht leer.
- ii) Wenn $x, y \in \bigcap \{ cl(a) : [a]_{\approx} \in G \}$, dann gilt x = y.

Wenn $\bigcap \{ \operatorname{cl}(a) : [a]_{\approx} \in G \} = \{r\}$, so heißt r random real über M.

Aufgabe 2. Zeigen Sie, dass B Kardinalzahlen erhält.

Eine Forcinghalbordnung \mathbb{P} heißt ω^{ω} -bounding, wenn es für jeden \mathbb{P} -Namen $\dot{f} \in M^{\mathbb{P}}$ und jede Bedingung $p \in \mathbb{P}$, so dass $p \Vdash_{\mathbb{P}} \dot{f} \in \omega^{\omega}$, eine Funktion $g \in \omega^{\omega} \cap M$ und eine Bedingung $q \leq p$ gibt, so dass $q \Vdash_{\mathbb{P}} \forall n \in \omega \ \dot{f}(n) \leq \check{g}(n)$.

Aufgabe 3. Zeigen Sie, dass $\mathbb{B} \omega^{\omega}$ -bounding ist.

Hinweis: Seien $\dot{f} \in M^{\mathbb{B}}$ und $[a]_{\approx} \in \mathbb{B}$ gegeben mit $[a]_{\approx} \Vdash \dot{f} \in \omega^{\omega}$. Für $n, m \in \omega$ definieren wir $[r_{n,m}]_{\approx} := [a]_{\approx} \wedge [\dot{f}(\check{n}) = \check{m}]$.

Erste Version:

Zeigen Sie, dass es für jedes $N \in \omega$ ein $h_N : N \to \omega$ gibt, so dass $h_N \subseteq h_{N+1}$ und

$$\lambda(\bigwedge_{n < N} \bigvee \{ [r_{n,m}]_{\approx} : m \le h_N(n) \}) \ge \lambda(a)(1 - 2^{-N-2}).$$

Wie sieht nun das passende $h \in \omega^{\omega} \cap M$ aus? Gibt es ein $[b]_{\approx} \in \mathbb{B}$, so dass $\forall n \in \omega$ $[b]_{\approx} \leq_{\mathbb{B}} \bigvee \{[r_{n,m}]_{\approx} : m \leq h(n)\}$?

Zweite Version:

Zeigen Sie, dass es für jedes $n \in \omega$ ein $h(n) \in \omega$ gibt, so dass

$$\lambda(\bigvee\{[r_{n,m}]_{\approx} : m \le h(n)\}) \ge \lambda(a)(1 - 2^{-n-2}).$$

Gibt es ein $[b]_{\approx} \in \mathbb{B}$, so dass $\forall n \in \omega \ [b]_{\approx} \leq_{\mathbb{B}} \bigvee \{ [r_{n,m}]_{\approx} : m \leq h(n) \}$?

Bitte wenden.

¹Dieses wird auch Solovay-Forcing genannt.

²Je nach Bewandertheit in stochastischen Rechnungen, kann man sich für eine Version entscheiden.

Mengenlehre: Unabhängigkeitsbeweise Dozentin: Prof. Dr. Heike Mildenberger WS 2018/19 Assistent: M. Sc. Brendan Stuber-Rousselle

Übungen

Vorspann zur Aufgabe 4: Eine Funktion $f \in M[G] \cap \omega^{\omega}$ heißt unbeschränkt über M, wenn

$$\forall h \in M \cap \omega^{\omega} \ \forall k \in \omega \ \exists n \ge k \ f(n) > h(n).$$

Aufgabe 4. Sei $\mathbb{C} := \operatorname{Fn}(\omega, 2, \omega)$ und G ein \mathbb{C} -generischer Filter über M. Gibt es in M[G] eine unbeschränkte Funktion über M? Folgern Sie, dass \mathbb{C} nicht ω^{ω} -bounding ist.

 $\mathit{Hinweis}$: Man kann z.B. $x_G := \bigcup G$ setzen und es mit der in M[G] definierten Funktion

$$f(0) := \min\{k : x_G(k) = 1\}$$

$$f(n+1) := \min\{k > f(n) : x_G(k) = 1\}$$

versuchen. Ist f wohldefiniert? Ist f unbeschränkt über M?