BLATT 2

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: M.Sc. Christian Bräuninger

(26.10.2022)

Aufgabe 1 (4 Punkte).

Eine Formel φ heißt *inkonsistent*, falls sie nicht erfüllbar ist. Entscheiden Sie, ob die folgenden Formeln Tautologien, erfüllbar oder inkonsistent sind. Begründen Sie Ihre Antwort.

- a) $((A \lor \neg B) \to \bot)$
- b) $((A \land \neg A) \to B)$
- c) $((A \lor B) \to B)$
- d) $((A \to B) \leftrightarrow (\neg B \to \neg A))$
- e) $((\neg A \land \neg B) \leftrightarrow (A \lor B))$
- f) $(((A \rightarrow B) \rightarrow A) \rightarrow A)$
- g) $(((A \to B) \to \neg A) \land \neg (A \lor B))$
- h) $((A \to (B \to C)) \leftrightarrow ((A \land B) \to C))$

Aufgabe 2 (4 Punkte).

Welche der folgenden Aussagen sind äquivalent?

- 1. $\sigma \vDash \tau$,
- $2. \models (\sigma \rightarrow \tau),$
- 3. $(\sigma \wedge \neg \tau)$ ist nicht erfüllbar,
- 4. $\sigma \equiv (\sigma \wedge \tau)$.

Aufgabe 3 (4 Punkte).

Geben Sie für die folgenden Formeln jeweils eine äquivalente Formel in disjunktiver Normalform und eine äquivalente Formel in konjunktiver Normalform an.

- a) $((A_0 \leftrightarrow A_1) \to A_2)$
- b) $((\neg A_0 \rightarrow A_1) \lor ((A_0 \land \neg A_2) \leftrightarrow A_1))$

Rückseite beachten!

Abgabe per Ilias oder in den (richtigen) Übungsaufgaben-Briefkasten in der Technischen Fakultät mit Namen und Nummer der Übungsgruppe bis Mittwoch 02.11.2021, 10 Uhr.

Aufgabe 4 (4 Punkte).

Eine Junktorenmenge \mathcal{J} heißt *vollständig*, wenn es zu jeder aussagenlogischen Formel σ eine (tautologisch) äquivalente aussagenlogische Formel τ gibt, die nur Junktoren aus \mathcal{J} enthält.

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: M.Sc. Christian Bräuninger

- a) Ist $\{\neg, \rightarrow\}$ eine vollständige Junktorenmenge?
- b) Für den Junktor | ("Scheffer stroke", "weder noch", in der Informatik auch "XAND") gilt: $\bar{v}((\varphi \mid \psi)) = W$ gdw $\bar{v}(\varphi) = F$ und $\bar{v}(\psi) = F$ für alle Erweiterungen \bar{v} von Wahrheitsbelegungen v.
 - Ist {|} eine vollständige Junktorenmenge?