BLATT 1 (19.10.2022)

Aufgabe 1 (4 Punkte).

Welche der folgenden Ausdrücke sind Formeln der Aussagenlogik? Begründen Sie Ihre Antwort.

a) $\neg (A_0 \lor (\neg A_1))$

c) $(A_2 \wedge A_3 \rightarrow A_5)$

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: Simon Klemm

b) $(A_1 \wedge \neg \neg A_6)$

d) $(A_4 \wedge \neg A_4)$

Aufgabe 2 (4 Punkte).

In der Polnischen Notation schreibt man Formeln so, dass man komplett ohne Klammern auskommt. Für einen binären Junktor * und zwei Formeln φ und ψ schreibt man dann * $\varphi\psi$ an Stelle ($\varphi*\psi$), also entspricht $\wedge \varphi\psi$ zum Beispiel der Formel ($\varphi\wedge\psi$). Diese Notation kann für Beweise oder Programmierungen nützlich sein, ist auf dem Papier aber oft schwerer lesbar.

- a) Schreiben Sie die folgenden Formeln in Polnischer Notation.
 - i) $((\neg A_0 \land A_1) \lor \neg A_2)$
 - ii) $(\neg (A_0 \rightarrow (A_2 \lor A_1)) \leftrightarrow ((\neg A_0 \land A_1) \rightarrow A_2))$
- b) Geben Sie jeweils eine Formel an, die den folgenden in Polnischer Notation gegebenen Formeln entsprechen.
 - i) $\leftrightarrow \neg \land \neg A_0 \neg A_1 \lor A_0 A_1$
 - ii) $\land \lor \neg \to A_0 A_1 \leftrightarrow A_2 A_0 \neg \to A_1 A_2$

Aufgabe 3 (4 Punkte).

Geben Sie für die folgenden Formeln jeweils eine erfüllende und eine nicht erfüllende Wahrheitsbelegung an.

- a) $(\neg A_0 \land (A_1 \lor \neg A_2))$
- b) $((A_3 \vee \neg A_3) \leftrightarrow A_4)$

Aufgabe 4 (4 Punkte).

Wir definieren rekursiv die Länge $l(\varphi)$ und die Höhe $h(\varphi)$ einer aussagenlogischen Formel φ nach folgenden Vorschriften, wobei * jeweils für einen beliebigen binären Junktor steht:

$$l(\varphi) = \begin{cases} 1, & \text{falls } \varphi \text{ gleich } \top, \perp \text{ oder } A_i \text{ für ein beliebiges } i \text{ ist} \\ l(\psi) + 1, & \text{falls } \varphi = \neg \psi \\ l(\psi) + l(\chi) + 3, & \text{falls } \varphi = (\psi * \chi) \end{cases}$$

$$\mathbf{h}(\varphi) = \begin{cases} 1, & \text{falls } \varphi \text{ gleich } \top, \perp \text{ oder } A_i \text{ für ein beliebiges } i \text{ ist} \\ \mathbf{h}(\psi) + 1, & \text{falls } \varphi = \neg \psi \\ \max(\mathbf{h}(\psi), \mathbf{h}(\chi)) + 1, & \text{falls } \varphi = (\psi * \chi) \end{cases}$$

Sei φ eine Formel der Höhe n. Gibt es dann eine Mindestlänge von φ ? Gibt es eine Höchstlänge von φ ?

Online Abgaben werden nur in PDF-Form bewertet.