BLATT 2

(26.10.2022)

Aufgabe 1 (2 Punkte).

Eine Formel φ heißt *inkonsistent*, falls sie nicht erfüllbar ist. Entscheiden Sie, ob die folgenden Formeln Tautologien, erfüllbar oder inkonsistent sind. Begründen Sie Ihre Antwort.

a)
$$((A \lor \neg B) \to \bot)$$

c)
$$((A \to B) \leftrightarrow (\neg B \to \neg A))$$

b)
$$((A \land \neg A) \to B)$$

d)
$$(((A \rightarrow B) \rightarrow \neg A) \land \neg (A \lor B))$$

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: Simon Klemm

Aufgabe 2 (4 Punkte).

Welche der folgenden Aussagen sind äquivalent?

a)
$$\sigma \models \tau$$

c)
$$(\sigma \wedge \neg \tau)$$
 ist nicht erfüllbar

b)
$$\models (\sigma \rightarrow \tau)$$

d)
$$\sigma \equiv (\sigma \wedge \tau)$$

Aufgabe 3 (2 Punkte).

Eine Junktorenmenge \mathcal{J} heißt vollständig, wenn es zu jeder aussagenlogischen Formel σ eine (tautologisch) äquivalente aussagenlogische Formel τ gibt, die nur Junktoren aus \mathcal{J} enthält.

Für den Junktor \downarrow ("weder noch", in der Informatik auch "NOR") gilt: $\bar{v}((\varphi \downarrow \psi)) = W$ gdw $\bar{v}(\varphi) = F$ und $\bar{v}(\psi) = F$ für alle Erweiterungen \bar{v} von Wahrheitsbelegungen v.

Ist $\{\downarrow\}$ eine vollständige Junktorenmenge?

Aufgabe 4 (4 Punkte).

Sei K_n der vollständige Graph mit n Knoten, die mit den Zahlen $0, \ldots, n-1$ benannt sind. Vollständig bedeutet, dass jedes Paar von Knoten i < j durch genau eine Kante $K_{i,j}$ verbunden ist. Für jede Kante $K_{i,j}$ sei eine Aussagenvariable $A_{i,j}$ gegeben¹. Die Kanten werden nun entweder blau oder rot gefärbt. Eine solche Färbung lässt sich als Belegung v der Aussagenvariablen $A_{i,j}$ (für alle i < j) mit Wahrheitswerten codieren.

a) Geben Sie für ein beliebiges n eine aussagenlogische Formel φ_n mit der folgenden Eigenschaft an: Für jede Belegung v gilt (unter der obigen Korrespondenz, wobei \bar{v} die eindeutige Erweiterung von v ist) $\bar{v}(\varphi_n) = W$ genau dann wenn in der Färbung von K_n ein monochromes Dreieck existiert, das heißt, es existieren drei Knoten, deren gemeinsame Kanten alle dieselbe Farbe haben.

Online Abgaben werden nur in PDF-Form bewertet.

¹Aussagenvariablen werden i.d.R. mit natürlichen Zahlen nummeriert. Für die bessere Notation wird in dieser Aufgabe die Notation zweckentfremdet. Für eine korrekte Notation, können Sie die Aussagenvariable $A_{i,j}$ als A_k für k = n * i + j auffassen.

b) Gibt es eine Belegung v derart, dass $\bar{v}(\varphi_5) = F$ gilt?

Anmerkung: Es lässt sich zeigen, dass φ_6 eine Tautologie ist. Mit anderen Worten existiert für jede Färbung der Kanten von K_6 ein rotes oder ein blaues Dreieck.

Dozentin: Prof. Dr. Heike Mildenberger

Assistent: Simon Klemm

Aufgabe 5 (4 Punkte).

Zeigen Sie die folgenden Aussagen.

- a) Induktiv über die Länge der Zeichenkette: Keine aussagenlogische Formel in Polnischer Notation ist ein echtes Anfangsstück einer anderen Formel in Polnischer Notation.

 Hinweis: Schwierig sind nur Anfangsstücke von $*\varphi_1\varphi_2$ für einen beliebigen zweistelligen Junktor *.

 Wenn ein solches selbst eine Formel wäre, welche Form hätte dann die Formel?
- b) Folgern Sie mit Hilfe von a), dass eine aussagenlogische Formel in Polnischer Notation eindeutig lesbar ist.