http://home.mathematik.uni-freiburg.de/ngrosse/

Übungsblatt 4

Aufgabe 13. Zeigen Sie, dass der Torus $S^1 \times S^1 = \{(\cos \phi, \sin \phi, \cos \psi, \sin \phi) \in \mathbb{R}^4 \mid \phi, \psi \in \mathbb{R}^4\}$ diffeomorph zum Rotationstorus

$$\mathbb{T}^2 = \{((2 + \cos \phi)\cos \psi, (2 + \cos \phi)\sin \psi, \sin \phi)^T \in \mathbb{R}^3 \mid \phi, \psi \in \mathbb{R}\} \subset \mathbb{R}^3$$

ist.

Aufgabe 14. (2+1+2) Sei $M := ([-1,1] \times \{-1\}) \cup ([-1,1] \times \{1\}) \cup (\{-1\} \times [-1,1]) \cup (\{1\} \times [-1,1]) \subset \mathbb{R}^2$.

- (i) Zeigen Sie, dass M homö
omorph zu S^1 ist. Folgern Sie daraus, dass M eine topologische Mannigfaltigkeit
 ist.
- (ii) Ist M eine Untermannigfaltigkeit von \mathbb{R}^2 ? Begründen Sie.
- (iii) Zeigen Sie, dass M für geeignete Wahl der Karten eine glatte Mannigfaltigkeit ist.

Aufgabe 15. (3+2) Sei X = [0,1]. Wir identifizieren $0 \sim 1$ und betrachten, die sich dadurch ergebene Äquivalenzrelation. Setze $Y = X/\sim$.

- (i) Zeigen Sie, dass Y eine glatte Mannigfaltigkeit ist.
- (ii) Zeigen Sie, dass Y diffeomorph zu S^1 ist.

Aufgabe 16. (2,5+2,5) Bearbeiten Sie mindestens <u>zwei</u> der folgenden Teilaufgaben: Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume und sei $f: X \to Y$ stetig. Sei Z eine beliebige Menge.

- (i) Sei $q: X \to Z$ surjektiv. Zeigen Sie, dass die Quotiententopologie $\mathcal{T}' = \{U \subset Z | q^{-1}(U) \in \mathcal{T}_X\}$ eine Topologie auf Z ist. Benötigt man die Surjektivität? Begründen Sie.
- (ii) $U \subset X$ ist genau dann kompakt als Teilmenge in X^1 , wenn es kompakt bezüglich der durch \mathcal{T}_X auf U induzierten Topologie ist.
- (iii) Ist $U \subset X$ kompakt, so ist auch $f(U) \subset Y$ kompakt.
- (iv) Sei X kompakt, sei Y Hausdorffsch und sei f bijektiv. Dann ist f bereits ein Homoömorphismus.
- (v) Ein topologischer Raum (X, \mathcal{T}) ist genau dann hausdorffsch, wenn $\{x\} = \bigcap_{U \in \mathcal{T}, x \in U} \bar{U}$ für alle $x \in X$ gilt.

Abgabe am Donnerstag 17.11.16 vor der Vorlesung in die Briefkästen

¹ $U \subset X$ ist kompakt, wenn jede offene Überdeckung von U eine endliche Teilüberdeckung enthält, d.h., für alle $U \subset \mathcal{T}_X$ mit $\cup_{U \in \mathcal{U}} U = X$ gibt es eine endliche Teilmenge $\mathcal{V} \subset \mathcal{U}$ mit $\cup_{U \in \mathcal{V}} U = X$.