Übungsblatt 5

Aufgabe 17. Sei $M = \mathbb{R}^2$. Sei $U = \mathbb{R}^2 \setminus \{(a,0)^T \mid a \geq 0\}$, $V = (0,\infty) \times (0,2\pi)$. Dann definiert $\kappa^{-1}(r,\phi) := (r\cos\phi, r\sin\phi)^T$ eine Karte $\kappa : U \to V$ von M (Polarkoordinaten). Desweiteren betrachten wir die Karte $\kappa' = \mathrm{id} : (x,y)^T \in \mathbb{R}^2 \to (x,y)^T \in \mathbb{R}^2$ auf M. Auf U betrachten wir die Vektorfelder $X := r\frac{\partial}{\partial r}$ und $Y := \frac{\partial}{\partial \phi}$. Berechnen Sie die Koordinatendarstellung von X und Y bzgl. der Karte κ' und skizzieren Sie die Vektorfelder.

Aufgabe 18 (2+3). Sei $f: M^m \to N^n$ eine glatte Abbildung zwischen glatten Mannigfaltigkeiten.

- (i) Zeigen Sie, dass $d_p f$ eine glatte Abbildung ist.
- (ii) Zeigen Sie, dass die Abbildung

$$df: TM \to TN, \ (p,v) \mapsto (f(p), d_p f(v))$$

glatt ist.

Aufgabe 19. (2+3) Sei M eine glatte Mannigfaltigkeit.

- (i) Ist M kompakt, dann ist $f \colon M \to N$ genau dann eine Einbettung, wenn f eine injektive Immersion ist. Das stimmt nicht, wenn M nichtkompakt ist, siehe Übungsaufgabe 3(ii).
 - (ii) Eine Abbildung heißt *eigentlich*, wenn Urbilder kompakter Teilmengen wieder kompakt sind. Zeigen Sie, dass jede eigentliche injektive Immersion eine Einbettung ist.

Definition. Eine Gruppe G heißt Liegruppe, falls G eine glatte Mannigfaltigkeit ist, für die die Abbildungen

$$G \times G \to G$$
, $(g,h) \mapsto gh$
 $G \to G$, $g \mapsto g^{-1}$

glatt sind.

Aufgabe 20 (1+2+2). (i) Zeigen Sie, dass eine offene Teilmenge einer Untermannigfaltigkeit im \mathbb{R}^n wieder eine Untermannigfaltigkeit im \mathbb{R}^n mit gleicher Kodimension ist.

- (ii) Zeigen Sie, dass $GL(n) := \{A \in M_{\mathbb{R}}(n \times n) \mid \det A \neq 0\} \subset M_{\mathbb{R}}(n \times n) \cong \mathbb{R}^{n^2}$ eine Liegruppe ist.
- (iii) Zeigen Sie, dass $O(n) \subset GL(n)$ und $SO(n) \subset GL(n)$ Liegruppen sind. (Hinweis: Für das Nachweisen der Glattheit der Abbildungen in der Liegruppendefinition am besten die Fortsetzungsbedingung (siehe Bedingung 1 in Folgerung I.2.12) statt die Karten nutzen.)