Übungsblatt 6

Aufgabe 21. Betrachten Sie die stereographische Projektion des hyperbolischen Raumes $\mathbb{H}^n \subset \mathbb{R}^{n+1}$ auf den Einheitsball $B_1(0) \subset \mathbb{R}^n$ gegeben durch

$$\phi \colon \mathbb{H}^n \to B_1(0), \ \begin{pmatrix} x^1 \\ \vdots \\ x^{n+1} \end{pmatrix} \mapsto \frac{1}{1+x^1} \begin{pmatrix} x^2 \\ \vdots \\ x^{n+1} \end{pmatrix}.$$

Sei g die auf $\mathbb{H}^n \subset \mathbb{R}^{n+1}$ durch die Lorentz-Metrik des \mathbb{R}^{n+1} induzierte Riemannsche Metrik. Berechnen Sie $(\phi^{-1})^*g$.

Man nennt $(B_1(0), (\phi^{-1})^*g)$ das Poincarésche Ballmodell des hyperbolischen Raumes.

Aufgabe 22. Sei M eine glatte Mannigfaltigkeit. Zeigen Sie, dass g genau dann eine semi-Riemannsche Metrik auf M ist, falls g jedem Punkt $p \in M$ eine nicht-entartete symmetrische Bilinearform g_p auf T_pM zuordnet und für je zwei glatte Vektorfelder $X,Y:M\to TM$ die Funktion $g(X,Y):M\to\mathbb{R}$ mit $g(X,Y)(p):=g_p(X(p),Y(p))$ glatt ist.

- **Aufgabe 23** (2+(1+2)). (i) Nach Aufgabe 15 ist $Y = [0, 2\pi]/\sim \mathbb{R}/\mathbb{Z}$ mit $0 \sim 2\pi$ eine zu S^1 diffeomorphe Mannigfaltigkeit. Nach Satz II.1.20 der Vorlesung induziert $(dt)^2$ auf \mathbb{R} (t sei die Koordinate auf \mathbb{R}) eine Riemannsche Metrik auf Y, die wir auch mit $(dt)^2$ bezeichnen. Zeigen Sie, dass $Y \to \mathbb{R}$, $t \mapsto (\cos t, \sin t)$ eine eine isometrische Einbettung ist, d.h. ϕ ist Einbettung und $\phi^*h = (dt)^2$, wobei h die von g_E auf $\phi(Y) = S^1$ induzierte Riemannsche Metrik (=1. Fundamentalform) ist.
- (ii) Sei $\phi: S^{n-1} \times (0, \infty) \subset \mathbb{R}^{n+1} \to \mathbb{R}^n$ gegeben durch $(x, r) \mapsto rx$. Es gilt $T_{(x,r)}(S^{n-1} \times (0, \infty)) \cong T_x S^{n-1} \times T_r(0, \infty)$.
 - (a) Zeigen Sie, dass $d_{(x,r)}\phi(v+a\frac{\partial}{\partial r})=ax+rv$ gilt, wobei $a\in\mathbb{R}$ und $v\in T_xS^{n-1}\subset\mathbb{R}^n$ ist.
 - (b) Berechnen Sie $\phi^* g_E$ in Termen von r, dr und der Standardmetrik auf S^{n-1} (=die auf der Untermannigfaltigkeit $S^{n-1} \subset \mathbb{R}^n$ von euklidischen Skalarprodukt induzierten Metrik = 1. Fundamentalform).

Aufgabe 24 (2+1+2+2*). (i) Berechnen Sie $T_{\mathrm{Id_n}}GL(n), T_{\mathrm{Id_n}}O(n), T_{\mathrm{Id_n}}SO(n) \subset \mathbb{R}^{n^2}$.

- (ii) Sei G eine Liegruppe, $h \in G$ und $R_h \colon G \to G$, $g \mapsto g \cdot h$. Zeigen Sie, dass $d_g R_h \colon T_g G \to T_{gh} G$ ein Vektorraumisomorphismus ist.
- (iii) Berechnen Sie $d_g R_h$ explizit für Liegruppen G, die Matrixgruppen sind, also für die G eine Teilmenge der (reellen bzw. komplexen) $n \times n$ -Matrizen ist und bei denen $g \cdot h$ durch Matrixmultiplikation der beiden Matrizen g und h gegeben ist (Z.B: $G = GL(n, \mathbb{R}), GL(n, \mathbb{C}), SL(n, \mathbb{R}), SL(n, \mathbb{C}), O(n), SO(n), U(n), SU(n)$).
- (iv*) Sei G Matrixgruppe wie oben. Sei $\phi \colon G \to G$, $g \mapsto g^{-1}$. Berechnen Sie $d_g \phi$. (Hinweis: Die Rechnungen für (iii) und (iv) für $GL(n, \mathbb{R})$ als offene Teilmenge von \mathbb{R}^{n^2} durchführen.)