Differentialgeometrie

http://home.mathematik.uni-freiburg.de/ngrosse/

Ksenia Fedosova, Nadine Große WS 19/20

Übungsblatt 2

Aufgabe 5 (2+1.5+1.5). Seien $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ und $Z \subset \mathbb{R}^\ell$ beliebige Teilmengen und $f: X \to Y$ und $g: Y \to Z$ glatt.

- (i) Zeigen Sie, dass $g \circ f \colon X \to Z$ glatt ist.
- (ii) Sei $X = S^1 \subset \mathbb{R}^2$ und $f: X \to \mathbb{R}$ gegeben durch

$$(x,y)^T \mapsto \begin{cases} \frac{1-y^2}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Ist f glatt? Begründen Sie.

(iii) Zeigen Sie, dass die Multiplikationsabbildung $\mu \colon \mathbb{O}(n) \times \mathbb{O}(n) \to \mathbb{O}(n)$, $(A, B) \mapsto AB$ und die Inversenbildung $\iota \colon \mathbb{O}(n) \to \mathbb{O}(n)$, $A \mapsto A^{-1}$, glatte Abbildungen sind. $(\mathbb{O}(n)$ ist die orthogonale Gruppe.)¹

Aufgabe 6 (2+1.5+1.5). Sei $U \subset \mathbb{R}^2$ offen, seien $g, h \colon U \to \mathbb{R}$ glatt. Wir betrachten die Untermannigfaltigkeiten $M_h = \text{Graph}(h)$ und $M_g = \text{Graph}(g)$. Sei $f \colon M_h \to M_g$ gegeben durch

$$(u, h(u))^T \mapsto (u, g(u))^T$$
.

- (i) Zeigen Sie einmal mittels der Definition und einmal mittels der zweiten Bedingung in Lemma I.2.12. aus der Vorlesung, dass f glatt ist.
- (ii) Berechnen Sie $T_pM_h\subset\mathbb{R}^3$ für $p\in M_h$ und geben Sie explizit eine Basis an.
- (iii) Berechnen Sie d_pf in der Basis aus (ii) für T_pM_h und $T_pM_g.$

Aufgabe 7. (2+1,5+1+0,5) Sei $A = A^T \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix. Sei $f : \mathbb{R}^n \to \mathbb{R}$ definiert als $f(x) = x^T A x$.

- (i) Zeigen Sie, dass $M_c = f^{-1}(c) = \{x \in \mathbb{R}^n \mid x^T A x = c\}$ für alle $c \in \mathbb{R} \setminus \{0\}$ eine Untermannigfaltigkeit des \mathbb{R}^n ist. Was ist die Dimension von M_c ?
- (ii) Berechnen Sie $T_x M_c$ für die M_c aus (i).
- (iii) Wenden Sie (i) und (ii) auf

$$M_c = \{(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid |x - y| = c\}$$

an.

(iv) Stimmt (i), wenn A nicht symmetrisch ist?

¹Gruppen, die Untermannigfaltigkeiten eines \mathbb{R}^k sind, und deren Multiplikations- und Inversenbildung glatt sind, nennt man *Liegruppen*. Alle Matrixuntergruppen von $Gl_n(\mathbb{R})$ und $Gl_n(\mathbb{C})$ sind Liegruppen.

Aufgabe 8 (1.5+0.5+1+1+1). Sei $M^m \subset \mathbb{R}^{m+1}$ eine Hyperfläche. Wir nennen M orientierbar, falls es ein stetiges nirgends verschwindendes Normalenfeld gibt.

- (i) Sei $p \in M$ und $F: U \to V$ eine lokalen Parametrisierung um p. Zeigen Sie, dass F(U) orientierbar ist.
- (ii) Ist S^2 orientierbar?
- (iii) Sei

$$M\ddot{o} = \{ F(s,t) \in \mathbb{R}^3 \mid t \in (-1,1), s \in \mathbb{R} \}$$

mit

$$F(s,t) = \left(\cos(s)\left(2 + t\cos\frac{s}{2}\right), \sin(s)\left(2 + t\cos\frac{s}{2}\right), t\sin\frac{s}{2}\right)^{T}.$$

Skizzieren Sie Mö und zeigen Sie, dass Mö $\subset \mathbb{R}^3$ eine Untermannigfaltigkeit in dem sie genügend lokale Parametrisierungen angeben. Zeigen Sie, dass Mö nicht orientierbar ist.

- (iv) Zeigen Sie, dass M genau dann orientierbar ist, falls es ein glattes nirgends verschwindendes Normalenfeld gibt.
- (v) Zeigen Sie, dass M genau dann orientierbar ist, falls es lokale Parametrisierungen $F_i\colon U_i\to V_i$ von M gibt, die M überdecken (d.h. es gilt $M\subseteq \cup_i V_i$) und det $D_{F_i^{-1}(p)}(F_j^{-1}\circ F_i)>0$ für alle i,j und $p\in V_i\cap V_j\cap M$ gilt. (Hinweis: Erweitern Sie $\frac{\partial F_i}{\partial u^i}(u)$ mittels eines Einheitsnormalenvektors $\nu_i(p=F(u))$ zu einer positiv orientierten Basis und diskutieren Sie, wann $\nu_i(p)=\nu_j(p)$ ist.)