http://home.mathematik.uni-freiburg.de/ngrosse/

Übungsblatt 5

Aufgabe 17. (2+2+1) Sei X ein glattes Vektorfeld auf einer Mannigfaltigkeit M. Sei $\kappa: U \to V$ eine Karte von M mit lokalen Koordinaten x^i .

In diesen Koordinaten habe X die Form $X(p) = X^i(\kappa(p)) \frac{\partial}{\partial x^i}|_p$ für $p \in U$. Für $f : M \to \mathbb{R}$ glatt setzen wir $(X.f)(p) := X^i(v) \frac{\partial f \circ \kappa^{-1}}{\partial x^i}(v)$ für $p = \kappa^{-1}(v) \in U$.

- (i) Zeigen Sie, dass (X.f)(p) unabhängig von der gewählten Karte ist und eine glatte Funktion $X.f \colon M \to \mathbb{R}$ definiert.
- (ii) Zeigen Sie, dass X.f = df(X) ist, d.h. $(X.f)(p) = d_p f(X(p))$ für alle $p \in M$ gilt, wobei wir $T_{f(p)}\mathbb{R}$ mit \mathbb{R} identifizieren.
- (iii) X.f sei analog für nicht zwingend glatte Vektorfelder definiert (X sei eine Abbildung von M nach TM mit $X(p) \in T_pM$ für alle $p \in M$). Zeigen Sie, dass X genau dann glatt ist, wenn X.f für alle glatten $f: M \to \mathbb{R}$ selbst glatt ist.

Aufgabe 18. Sei $R: C^{\infty}(M) \to C^{\infty}(M)$ eine Abbildung mit folgenden Eigenschaften

- (i) R(f+g) = R(f) + R(g)
- (ii) $R(\alpha f) = \alpha R(f)$
- (iii) R(fg) = R(f)g + R(g)f

für alle $f, g \in C^{\infty}(M)$ und $\alpha \in \mathbb{R}$. Zeigen Sie, dass es ein eindeutiges glattes Vektorfeld X auf M mit $R(f) = X \cdot f$ gibt.

(Hinweis: Benutzen Sie Aufgabe 17. Beachten Sie, dass man mittels Multiplikation mit einer geeigneten Abschneidefunktion aus einem lokal auf nur einer Karte definiertem Vektorfeld immer ein Vektorfeld auf M bauen kann.)

Aufgabe 19. (1+1+1+2) Wir hatten in der Vorlesung gesehen, dass $\mathbb{O}(n)$ eine Untermannigfaltigkeit von $M_{\mathbb{R}}(n,n) \cong \mathbb{R}^{n^2}$ ist. Nach ÜA 5 ist $\mathbb{O}(n)$ sogar eine Liegruppe.

- (i) Zeigen Sie, dass auch $\mathrm{Gl}_n(\mathbb{R})$ eine Untermannigfaltigkeit von $M_{\mathbb{R}}(n,n)$ und eine Liegruppe ist.
- (ii) Was ist der Tangentialraum von $Gl_n(\mathbb{R})$ in $A \in Gl_n(\mathbb{R})$?
- (iii) Berechnen Sie explizit den Tangentialraum von $\mathbb{O}(n)$ in der Identitätsmatrix.
- (iv) Für eine Liegruppe G und ein $h \in G$ sei $L_h : G \to G$ definiert als $g \in G \mapsto hg$. Berechnen Sie $d_g L_h$ für $G = \mathrm{Gl}_n(\mathbb{R})$ und $G = \mathbb{O}(n)$.

Aufgabe 20. (2+2+1) Sei M eine glatte Mannigfaltigkeit und $f: M \to N$ glatt.
(i) Sei $f(W)$ offen in $f(X)$ ($f(X)$ mit der induzierten Topologie von N) für alle W offen in M . Sei f injektiv. Zeigen Sie, dass dann f homöomorph aufs Bild abbildet.
(ii) Zeigen Sie, dass jede eigentliche injektive Immersion eine Einbettung ist.
(iii) Sei M kompakt. Zeigen Sie, dass dann jede stetige Abbildung $f\colon M\to N$ eigentlich ist.