Übungsblatt 8

Übungsaufgabe 29 (Fleig/Amann). Sei H eine Lieuntergruppe der Liegruppe G. Sei $\Psi \colon G \times G/H \to G/H$, $(g', gH) \mapsto \Psi_{g'}(gH) := g'gH$. Sei $\rho \colon H \to \mathrm{Gl}(T_H(G/H))$ die Isotropiedarstellung von H ist, d.h. $\rho(h) := d_H \Psi_h$.

- (i) Sei Ψ eine effektive Wirkung. Zeigen Sie, dass dann das Tangentialbündel $T(G/H) \to G/H$ isomorph zum assozierten Faserbündel $G \times_{\rho} T_H(G/H) \to G/H$ ist.
- (ii) Sei $\bar{H} := \{g \in G \mid \Psi_g = \mathrm{id}_M\}$. Dann ist \bar{H} der größte Normalteiler von G, der in H enthalten ist.
- (iii) Zeigen Sie, dass die induzierte wirkung von $\hat{G} = G/\bar{H}$ auf M = G/H effektiv ist und dass $M = \hat{G}/\hat{H}$ für $\hat{H} = H/\bar{H}$ gilt.

Übungsaufgabe 30 (Beisitzer/Stappen). Wir identifizieren die Standardssphäre S^3 mit der Gruppe der Quaternionen \mathbb{H} vom Betrag 1 und SO(3) sei die spezielle orthogonale Gruppe die auf span $\{i,j,k\} \cong \mathbb{R}^3$ wirkt. Sei $\lambda \colon S^3 \to \operatorname{End}(\mathbb{H}), \ \lambda(p)q := pqp^{-1}$ (Multiplikation als Quaternionen).

- (i) Zeigen Sie, dass ρ die Zerlegung span $\{1\} \oplus$ span $\{i, j, k\}$ respektiert, dann $\lambda(p)$ ein Element in SO(3) definiert und damit $\lambda \colon S^3 \to SO(3)$ ein surjektiver Gruppenhomomorphismus mit Kern $\{\pm 1\}$ ist. Folgern Sie damit, dass SO(3) diffeomorph zu $\mathbb{R}P^3$ ist und λ die zugehörige zweifache Überlagerung ist.
- (ii) Zeigen Sie, dass $SO(3)/SO(2) \to S^2$, $[g] \mapsto ge_1$, ein Diffeomorphismus ist, wobei $A \in SO(2) \hookrightarrow \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix} \in SO(3)$, also $e_1 \in \mathbb{R}^3$, der erste Koordinatenvektor, ein Fixpunkt von $A \in SO(2)$.
- (iii) Sei $\pi\colon SO(3)\to S^2$ das zu (ii) gehörige SO(2)-Hauptfaserbündel. Ist $\pi\circ\lambda\colon S^3\to S^2$ äquivalent zur Hopffaserung?

Übungsaufgabe 31 (Lenthe/Grom). Sei $P \to M$ ein G-Hauptfaserbündel und $\rho \colon G \times F \to F$ eine Linkswirkung. Sei $\operatorname{Hom}^G(P,F)$ die Menge der glatten Abbildungen $u \colon P \to F$ mit $u(p \cdot g) = \rho(g^{-1},u(p))$ für alle $p \in P$ und $g \in G$.

- (i) Zeigen Sie, dass es zu jedem $u \in \operatorname{Hom}^G(P, F)$ einen Schnitt $\phi_u \in \Gamma(P \times_{\rho} F)$ mit $\phi_u \circ \pi = \hat{\pi} \circ (\operatorname{id}_P, u) \colon P \mapsto P \times_{\rho} F$ definiert. Hierbei ist $\hat{\pi} \colon P \times F \to P \times_{\rho} F$ die kanonische Projektion. Zeigen Sie weiterhin, dass diese Zuordnung $u \mapsto \phi_u$ eine Bijektion von $\operatorname{Hom}^G(P, F)$ mit $\Gamma(P \times_{\rho} F)$ ist.
- (ii) Zeigen Sie, dass ein G-Hauptfaserbündel $P \to M$ genau dann auf die Lieuntergruppe $H \subset G$ reduzierbar ist, wenn das assoziierte Faserbündel $P \times_{\ell} G/H$ (wobei $\ell \colon G \times G/H$, $(g,kH) \mapsto gkH$) einen globalen glatten Schnitt besitzt.

Definition. Sei M eine Mannigfaltigkeit mit Atlas $\kappa_{\alpha} : U_{\alpha} \subset M \to V_{\alpha} \subset \mathbb{R}^{m}$. Wir definieren einen Čech-Kozykel mit Werten in \mathbb{Z}_{2} : Für $x \in U_{\alpha} \cap U_{\beta}$ sei $\mu_{\alpha\beta}(x) := \operatorname{sign} \det D(\kappa_{\beta}^{-1} \circ \kappa_{\alpha}) \in \mathbb{Z}_{2}$. (Man überprüft direkt die Kozykelbedingung.) Nach Satz I.1.8 definiert $\mu_{\alpha\beta}$ damit ein \mathbb{Z}_{2} -Hauptfaserbündel - das *Orientierungsbündel* über M.

Übungsaufgabe 32 (Storch/Jeßberger). Sei M eine zusammenhängende Mannigfaltigkeit und $\pi \colon E \to M$ das Orientierungsbündel über M. Zeigen Sie, dass E genau dann zusammenhängend ist, wenn M nicht orientierbar ist. Folgern Sie daraus, dass eine einfach-zusammenhängende Mannigfaltigkeit (also $\pi_1(M) = 0$) orientierbar ist.