

Light Leaves Basis of Indecomposable Soergel Bimodules

Patimo, Leonardo

Advisor : Dr. Geordie Williamson

Soergel Bimodules

A Coxeter group W is a group that can be presented as

$$\langle s \in S \mid (st)^{m_{s,t}} = 1 \; \forall s, t \in S$$

where S is a finite set, $m_{s,s} = 1$ and $m_{s,t}$ is an integer ≥ 2 (or ∞ , meaning no relation) if $s \neq t$. Let $\mathfrak{h} = \bigoplus_{s \in S} \mathbb{R} \alpha_s^{\vee}$. We can define a representation of W on \mathfrak{h} , called the *geometric representation*, through

 $s(v) = v - \alpha_s(v)\alpha_s^{\vee}$ where $\alpha_s \in \mathfrak{h}^*$ and $\alpha_s(\alpha_t^{\vee}) = -2\cos(\pi/m_{s,t}) \quad \forall s, t \in S.$

Example. S_n is a Coxeter group: $S = \{s_1 = (1 \leftrightarrow 2), ..., s_{n-1} = (n-1 \leftrightarrow n)\}$ is the set of simple transpositions, $m_{s_i,s_j} = 3$ if |i-j| = 1 and $m_{s_i,s_j} = 2$ otherwise. The geometric representation of S_n is isomorphic to $\mathbb{R}^n / \langle (1, ..., 1) \rangle$, where S_n acts on \mathbb{R}^n permuting the coordinates.

Let $R = \text{Sym}(\mathfrak{h}^*)$, the graded algebra in which \mathfrak{h}^* has degree 2. For an element $s \in S$ we define the bimodule $B_s = R \otimes_{R^s} R(1)$, where R^s is the subalgebra of s-invariants and (1) denotes the grading shift which places the element $1 \otimes 1$ in degree -1. For an expression $\underline{w} = s_1 s_2 \dots s_n$ (not necessarily reduced) we define the **Bott-Samelson bimodule**:

 $BS(\underline{w}) := B_{s_1} \otimes_R B_{s_2} \otimes_R \ldots \otimes_R B_{s_n} = R \otimes_{R^{s_1}} R \otimes_{R^{s_2}} \ldots \otimes_{R^{s_n}} R(n).$

We denote by \mathbb{BSM} of the full subcategory of R-Mod-R whose objects are precisely the Bott-Samelson bimodules.

Soergel [Soe07] proved that for any $x \in W$ there is a unique indecomposable bimodule $B_x \subseteq BS(\underline{x})$ which does not occur as a summand of $BS(\underline{y})$ for any expression \underline{y} shorter than \underline{x} . Moreover, the bimodule B_x does not depend, up to isomorphism, on the choice of the reduced expression \underline{x} .

Definition. The category of **Soergel bimodules** M of is the additive subcategory of R-Mod-R generated by direct summands of shifts of Bott-Samelson bimodules.

Therefore the bimodules B_x , $x \in W$ and their shifts give a set of representatives of the indecomposable Soergel bimodules.

Remark. The indecomposable bimodule B_x has an important geometric meaning when W is a Weyl group. It is the equivariant hypercohomology of the IC-sheaf of the Schubert variety corresponding to x inside the flag variety G/B, where G is a reductive group having W as Weyl group and B a Borel subgroup.

Soergel bimodules give a categorification of the Hecke algebra $\mathcal{H}(W, S)$ of the Coxeter group.

Theorem (Soergel's categorification theorem + Soergel's Conjecture [Soe07, EW14]). There exists an isomorphism ch : $\mathfrak{K}^0(\mathbb{S}Mod) \to \mathcal{H}(W, S)$, where \mathfrak{K}^0 denotes the split Grothendieck group. Moreover ch $(B_x)_{x \in W}$ is the Kazhdan-Lusztig basis of $\mathcal{H}(W, S)$ as defined in [KL79].

Diagrammatics for Soergel Bimodules

In [EW13] Elias and Williamson gave an alternative description, by generators and relations, of BSMod using planar diagrams. This also provides, after taking the idempotent completion, a description of the category of Soergel bimodules SMod.

They first assign a different color to each element of S. Then objects in the category \mathbb{BSM} od correspond to sequences of colored dots:

 $BS(\underline{w})$ where $\underline{w} = \underline{s_1 s_2 \dots s_n} \longleftrightarrow \bullet \bullet \dots \bullet$

The morphisms in \mathbb{BSM} are a linear combination of isotopy classes of some decorated planar diagrams embedded in the strip $\mathbb{R} \times [0, 1]$. The edges of this diagram are colored as the elements of S and they may end in a dot with the same color on the boundary of the strip.

Example. A morphism between $BS(\underline{tstsstus})$ and $BS(\underline{stsutsuu})$, where $m_{s,t} = 5$, $m_{s,u} = 3$ and $m_{t,u} = 2$.

The generating morphisms, i.e. the kinds of vertices allowed in the diagrams, are:

 $2m_{s,t}$ -valent vertex (here $m_{s,t} = 4$)

The connected components of the complement of the diagram can be decorated by elements $f \in R$. Finally one needs to quotient the set of diagrams so obtained by the following relations:

• One color relations:

• Two color relations (here we illustrate only the case $m_{s,t} = 3$)

• Three color relations (not described here).

Light Leaves Basis

In [Lib08] Libedinsky defined inductively and explicitly a basis of the free right *R*-Mod Hom $(BS(\underline{x}), BS(\underline{y}))$ for any two sequences \underline{x} and \underline{y} . Let $\underline{x} = s_1 s_2 \dots s_n$ and $e \in \{0, 1\}^n$. For any $k \leq n$ we define $\underline{x}_{\leq k} = s_1 s_2 \dots s_k$ and $x_{\leq k}^e = s_1^{e_1} s_2^{e_2} \dots s_k^{e_k}$. Assume by induction we have already defined a map $LL_{\leq k-1,e} \in$ Hom $(BS(\underline{x}_{\leq k-1}), BS(x_{\leq k-1}^e))$. Then we obtain $LL_{\leq k,e}$ after dividing in four different cases, as follows:

	$e_k = 0$	$e_k = 1$
	U0	D0
	$LL_{\leq k-1,e}$	$LL_{\leq k-1,e}$
$x^e_{\leq k-1}s_k > x^e_{\leq k-1}$		
	U1	D1
	$\begin{array}{c} \\ braid \\ \\ LL_{\leq k-1,e} \end{array}$	$\begin{array}{c} \\ \text{braid} \\ \\ LL_{\leq k-1,e} \end{array}$
$x^e_{\leq k-1}s_k < x^e_{\leq k-1}$		

where "braid" is a subdiagram containing only braid moves, i.e. only 2m-valent vertices. We call the resulting morphism $LL_{\underline{x},e} = LL_{\leq n,e}$ a **Light Leaf**. The choice of the "braid" part is not canonical, so neither are the light leaves.

Example. $W = A_2$ the Coxeter group where $S = \{s, t, u\}$ and $m_{s,t} = m_{t,u} = m_{s,u} = 3$. Let $\underline{w} = stustu$ and e = (1, 0, 1, 1, 0, 1). Then

We could flip upside down a light leaf $LL_{x,e} \in \text{Hom}(BS(\underline{x}), BS(\underline{z}))$ in order to obtain an element of $\text{Hom}(BS(\underline{z}), BS(\underline{x}))$: we will denote it by $\overline{LL}_{x,e}$.

Theorem. The set $\{\overline{LL}_{\underline{y},f} \circ LL_{\underline{x},e}\}$ where $x^e = y^f$ is a (cellular) basis for $\operatorname{Hom}(BS(\underline{x}), BS(\underline{y}))$, called the **Double Leaves Basis**.

Light leaves are also useful to construct a basis of our Bott-Samelson bimodules that is compatible with the support filtration. Let us denote by 1^{\otimes} the element $1 \otimes 1 \otimes \ldots \otimes 1$ in a BS bimodule.

Corollary. The set $\{\overline{LL}_{x,e}(1^{\otimes})\}$ where $e \in \{0,1\}^n$ is a basis of $BS(\underline{x})$, called the **Light Leaves Basis**.

Example. The Light Leaves basis for $BS(\underline{sts}) \in \widetilde{A}_2$ is

Let $\underline{w} = \underline{s_1 s_2 \dots s_n}$ a reduced expression. Choosing an embedding of the indecomposable module B_w as a summand of $BS(\underline{w})$ is the same thing as choosing a primitive idempotent $\phi_w \in \text{End}(BS(\underline{w}))$ such that $\phi_w(1^{\otimes}) \neq 0$. There is not a unique choice for such an idempotent, but still we can make a natural and convenient choice by induction.

Let $\underline{w}' = s_1 s_2 \dots s_{n-1}$ so that $\underline{w} = \underline{w}' s_n$. We can assume that we have already fixed an idempotent $\phi_{w'} \in \operatorname{End}(\overline{BS(\underline{w}')})$. Now B_w still occur as an indecomposable summand in $B_{w'}B_s$ and, moreover, it is also uniquely determined. So there is a unique choice of an indecomposable $\phi_{w',s} \in \operatorname{End}(B_{w'}B_s)$ corresponding to B_w . We choose $\phi_w := \phi_{w',s} \circ (\phi_{w'} \otimes \operatorname{id}_R) \in \operatorname{End}(BS(\underline{w}))$ as the idempotent for B_w .

Light Leaves Basis for Indecomposable Soergel Bimodules

Having fixed an idempotent $\phi_w \in \text{End}(BS(\underline{w}))$ whose image is B_w , it makes sense to ask how, projecting with ϕ_w , one can obtain a basis for B_w starting with the Light Leaves basis for $BS(\underline{w})$.

Example. In the previous example the first 6 elements of the described basis of $BS(\underline{sts})$ form, after projecting, a basis of B_{sts} . These are the Light Leaves where no D's appear: they always give a set of linear independent elements. it is not true in general that they generate, as for the following elements of \tilde{A}_2 : Let $\underline{w} = \underline{stustustu}$. Then a basis for B_w is given by projecting

- All the Light Leaves without *D*'s for <u>stustustu</u>;
- All the Light Leaves without D's for \underline{stustu} composed with

Let $\underline{w} = \underline{ustustusutsutsu}$. Then a basis for B_w is given by projecting

- All the Light Leaves without D's for <u>ustustusutsutsu</u>;
- All the Light Leaves without D's for $\underline{ustustsutsu}$, $\underline{ustutsu}$ and \underline{usu} composed respectively with

This generalizes to a description (partly conjectured) of a basis of B_w for any $w \in \widetilde{A}_2$.

Some arising questions

- 1. There are some relations one needs to quotient out to compute a basis for the indecomposable bimodules: for example if in a LL a subdiagram of the form () appears at the bottom, then its projection is 0. Is it possible to understand all such relations?
- 2. Is there a way to make the construction of this basis "canonical" (e.g. not depending on the reduced expression)?
- 3. In the ordinary Schubert calculus the Pieri's formula explains how to multiply a cohomology class by a Chern class: can we find a basis of the indecomposable Soergel bimodules where one has an analogous to the Pieri formula?

References

- [EW13] B. Elias and G. Williamson. Soergel calculus, 2013.
- [EW14] Ben Elias and Geordie Williamson. The Hodge theory of Soergel bimodules. Ann. of Math. (2), 180(3):1089–1136, 2014.
- [KL79] David Kazhdan and George Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53(2):165–184, 1979.
- [Lib08] Nicolas Libedinsky. Sur la catégorie des bimodules de Soergel. J. Algebra, 320(7):2675–2694, 2008
- [Soe07] Wolfgang Soergel. Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen. J. Inst. Math. Jussieu, 6(3):501–525, 2007.

2015 Max Planck Institute for Mathematics leonardo@mpim-bonn.mpg.de