Prof. Amador Martin-Pizarro Übungen: Xier Ren

Topology

Problem Sheet 0

This sheet will not be graded!

Exercise 1.

Show that the collection \mathcal{B} of half-open intervals $[a, \infty)$ with a in \mathbb{R} determines a basis of a topology. Is $(0, \infty)$ open in this topology?

Determine whether this topology is coarser or feiner than the euclidean topology.

Exercise 2.

Consider the euclidean topology on the real line \mathbb{R} .

- a) Describe all subsets of \mathbb{R} , which are clopen (that is, both open and closed).
- b) Is the euclidean topology 0-dimensional?

Exercise 3.

Given an infinite set X, show that the collection \mathcal{B} of subsets Y with Y empty or $X \setminus Y$ countable determines a topology, the *co-countable topology* on X.

- a) Is the co-countable topology comparable to the euclidean topology on \mathbb{R} ?
- b) Describe the interior of the interval [0,1] as a subset of \mathbb{R} in the co-countable topology.
- c) What is the topological closure of [0, 1]?

Exercise 4.

Given a subset A of a topological space (X, \mathcal{T}) , show the following equalities:

a)
$$(\overline{A})^c = (\overset{\circ}{A^c})$$

b)
$$\overline{A} = A \cup \lim A$$
.