Prof. Amador Martin-Pizarro Übungen: Xier Ren

Topology

Problem Sheet 1 Deadline: 23 April 2024, 15h

Exercise 1 (3 Points).

Given subsets A and B of a topological space, show that $(A \cap B) = A \cap B$. Is $(A \cup B) = A \cup B$ true in general?

Exercise 2 (6 Points).

Let \mathcal{S} be the collection of subsets of \mathbb{R} of the form $(-\infty, a) \cup (b, \infty)$ mit a < b.

- a) Is \mathcal{S} a basis of a topology?
- b) Let now $\mathcal{T}_{\mathcal{S}}$ be the topology on \mathbb{R} generated by \mathcal{S} . Determine whether this topology is T_1 or Hausdorff.
- c) Describe the limit points, as well as the interior and the closure of the subset $A = [0, 1] \cup \{2\}$.
- d) Is A nowhere dense?

Exercise 3 (8 Points). Consider the collection \mathcal{B} of all subsets of the integers \mathbb{Z} of the form $a + k \cdot \mathbb{Z}$, with $k \neq 0$.

- a) Show that \mathcal{B} determines a topology \mathcal{T} on \mathbb{Z} as a basis of \mathcal{T} .
- b) Show that every non-empty open subset of \mathbb{Z} is infinite. Does \mathbb{Z} have isolated points in this topology?
- c) Show that $(\mathbb{Z}, \mathcal{T})$ is 0-dimensional. Conclude that it is Hausdorff.
- d) Deduce that there are infinitely many prime numbers.

Hint: Consider the complement of $\{-1, 1\}$.

Exercise 4 (3 Points).

A topological space (X, \mathcal{T}) has the weak Baire property if $X \neq \emptyset$ and the intersection $\bigcap_{n \in \mathbb{N}} U_n$ of a countable family of open dense subsets U_n is not empty.

Show that (X, \mathcal{T}) has the weak Baire property if and only if X is not meager.

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im entsprechenden Fach im Keller des mathematischen Instituts.