Prof. Amador Martin-Pizarro Übungen: Stefan Ludwig

Mathematische Logik

Blatt 3

Abgabe: 19.05.2025 10Uhr Gruppennummer angeben!

Aufgabe 1 (7 Punkte).

Sei \mathcal{L} die Sprache mit einem einstelligen Funktionszeichen f. Betrachte die \mathcal{L} -Struktur \mathcal{M} mit Universum $\mathbb{R} \times \mathbb{Z}$, für welche die Interpretation $f^{\mathcal{M}}$ die Funktion ist, welche das Paar (r, n) auf (r, n + 1) abbildet.

- (a) Zeige, dass $\mathbb{N} \times \mathbb{Z}$ Universum einer Unterstruktur \mathcal{A} von \mathcal{M} ist. Ist \mathcal{A} endlich erzeugt?
- (b) Gegeben Elemente η_1, \ldots, η_m aus $\mathbb{N} \times \mathbb{Z}$, zeige, dass die Kollektion aller partieller Isomorphismen F zwischen endlich erzeugten Unterstrukturen von \mathcal{A} und von \mathcal{M} derart, dass für jedes $1 \leq i \leq m$ das Element η_i sowohl in $\mathrm{Dom}(F)$ als auch in $\mathrm{Im}(F)$ liegt und $F(\eta_i) = \eta_i$ gilt, ein Back-&-Forth-System bildet.
- (c) Schließe daraus, dass \mathcal{A} eine elementare Unterstruktur von \mathcal{M} ist.

Aufgabe 2 (3 Punkte).

Forme folgende Aussage in pränexe Normalform um und beschreibe die Strukturen, in welchen diese Aussage gilt.

$$\forall x \forall y \left(\neg(x \doteq y) \longrightarrow \forall z \forall u \Big(\Big(\neg(z \doteq x) \longrightarrow \big(\neg(z \doteq y) \lor (u \doteq y) \big) \Big) \longrightarrow \neg(z \doteq u) \Big) \right)$$

Aufgabe 3 (7 Punkte).

Zeige, dass die folgenden Formeln beweisbar sind und leite sie aus dem Hilbertkalkül für die Sprache \mathcal{L} ab, welche das einstellige Funktionszeichen f enthält.

(a)
$$\forall x \exists y (f(x) \doteq y)$$

(b) $\forall x \exists y \Big(\big(f(x) \doteq f(f(y) \big) \to (x \doteq y) \Big)$ (c) $\Big(\exists x \exists y \neg \big(f(x) \doteq f(y) \big) \to \exists u \exists z \neg \big(u \doteq f(z) \big) \Big)$

Aufgabe 4 (3 Punkte).

Betrachte einen Körper K als Struktur in der Ringsprache \mathcal{L}_{Ring} . Zeige, dass für $n \geq 1$ die Kollektion von n-Tupeln (a_0, \ldots, a_{n-1}) derart, dass das normierte Polynom $P(T) = T^n + \sum_{i=0}^{i=n-1} a_i T^i$ eine Nullstelle in K besitzt 0-definierbar ist. Kann für einen unendlichen jedoch nicht algebraisch abgeschlossenen Körper K (z. B. $K = \mathbb{Q}$) eine dieser Mengen endlich sein?

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM KELLER DES MATHEMATISCHEN INSTITUTS.