Prof. Amador Martin-Pizarro Übungen: Stefan Ludwig

Mathematische Logik

Blatt 5

Abgabe: 02.06.2025 10Uhr Gruppennummer angeben!

Aufgabe 1 (14 Punkte).

In der Graphensprache $\mathcal{L} = \{R\}$ mit dem zweistelligen Relationszeichen R betrachten wir jeden (ungerichteten) Graphen als \mathcal{L} -Struktur (siehe Beispiel 2.2 im Skript), indem wir R als die Kantenrelation zwischen zwei verschiedenen Knoten interpretieren. Beachte, dass kein Knoten mit sich selbst verbunden ist! Ein Zufallsgraph ist ein Graph mit folgender Eigenschaft (\star):

Für je zwei endliche (möglicherweise leere) disjunkte Teilmengen A und B der Grundmenge gibt es einen Punkt c derart, dass für alle a aus A und b aus B das Paar (a,c) eine Kante bildet, aber (b,c) nicht.

- (a) Zeige, dass es ein solches Element c wie oben gibt, welches weder in A noch in B liegt. Schließe daraus, dass ein Zufallsgraph unendlich sein muss.
- (b) Sei $n = \sum_{i=0}^{k} [n]_i \cdot 2^i$ die binäre Darstellung der natürlichen Zahl n, wobei $[n]_i = 0, 1$ für $0 \le i \le k$. Wir definieren nun die \mathcal{L} -Struktur \mathcal{A} mit Universum \mathbb{N} und folgender Intepretation:

$$R^{\mathcal{A}}(n,m) \Leftrightarrow [m]_n = 1 \text{ oder } [n]_m = 1$$

Zeige, dass \mathcal{A} ein Graph ist. Zeige weiter, dass \mathcal{A} ein Zufallsgraph ist.

- (c) Axiomatisiere mit Hilfe von (\star) die Klasse von Zufallsgraphen. Ist die entsprechende Theorie widerspruchsfrei?
- (d) Zeige, dass je zwei Zufallsgraphen elementar äquivalente \mathcal{L} -Strukturen sind. Schließe daraus, dass die entsprechende Theorie vollständig ist.
- (e) Zeige mit Hilfe des Kompaktheitssatzes, dass es eine elementare Erweiterung \mathcal{B} von \mathcal{A} mit einem Element b aus B derart gibt, dass b genau mit den (Bildern unter der elementaren Einbettung der) geraden Zahlen aus dem Universum \mathbb{N} von \mathcal{A} verbunden ist.

Bonus Zeige mit Hilfe der Teilaufgabe (d), dass je zwei abzählbare Zufallsgraphen isomorph sind.

Aufgabe 2 (6 Punkte).

Sei \mathcal{L} die Sprache, welche aus einem zweistelligen Relationssymbol E besteht. Betrachte die \mathcal{L} -Struktur \mathcal{N} mit Universum \mathbb{N} in welcher $E^{\mathcal{N}}(n,m)$ genau dann gilt, falls n als Exponent in der Darstellung von m zur Basis 2 vorkommt, das heißt, falls $[m]_n = 1$ (siehe Aufgabe 1).

- (a) Zeige, dass **Extensionalität** in \mathcal{N} gilt: $\mathcal{N} \models \forall x \forall y \Big(\forall z \, (zEx \leftrightarrow zEy) \rightarrow (x \doteq y) \Big)$.
- (b) Erfüllt \mathcal{N} das **Paaraxiom**? Beschreibe das Element aus \mathbb{N} , welches das Paar (2,3) repräsentiert.
- (c) Gibt es eine une ndliche Folge $\{x_n\}_{n\in\mathbb{N}}$ von Elementen aus \mathbb{N} mit $x_{n+1}E^{\mathcal{N}}x_n$ für jedes n?

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM KELLER DES MATHEMATISCHEN INSTITUTS.