Nichtkommutative Algebra und Symmetrie SS 2019 — Ubungsblatt 1 24.4.2019

Informationen zur Vorlesung finden Sie unter: http://home.mathematik.uni-freiburg.de/soergel/ss19nkas.html

Exercise 1.1: Consider the representation $V = \mathbb{R}_+ \oplus \mathbb{R}_-$ of $\mathbb{Z}/2\mathbb{Z}$.

- 1. How many subrepresentations has V? Is V cyclic?
- 2. What about $W = \mathbb{R}_+ \oplus \mathbb{R}_+ \oplus \mathbb{R}_-$?

Exercise 1.2: Let $C_n = \mathbb{Z}/n\mathbb{Z}$ be the cyclic group with *n* elements.

- 1. Show that representations of C_n is determined by $A \in End(V)$ such that $A^n = id$
- 2. Show that all the irreducible (and indecomposable) representations of C_n over \mathbb{C} are of dimension 1.
- 3. Find all irreducible representations of C_n over \mathbb{C}
- 4. Let $V = \mathbb{C}^n$ and let ρ be the representation of C_n obtained by cycling the coordinates, that is for any $k \in \mathbb{Z}/n\mathbb{Z}$ we have

 $\rho(k)(x_1, x_2, \dots, x_n) = (x_{k+1}, x_{k+2}, \dots, x_{k+n \pmod{n}}).$

Write the decomposition of V into irreducible representations.

Exercise 1.3: Let p a prime and C_p the cyclic group with p elements.

- 1. Find all irreducible representations of C_p over \mathbb{F}_p .
- 2. Find all indecomposable representations of C_p over \mathbb{F}_p .
- 3. (*) Let now G a p-group, that is $|G| = p^k$. Show that G has only one irreducible representation over \mathbb{F}_p .

(Hint: every p-group contains a cyclic group C_p in its center Z(G)).

Exercise 1.4: Let (V, ρ) be a representation of a group G.

1. Show that

 $\rho^*(g): \lambda \mapsto \left(v \mapsto \lambda(\rho(g^{-1})v)\right).$

defines a representation of G on V^* .

- 2. Show that if V is finite dimensional then ρ irreducible $\implies \rho^*$ irreducible.
- 3. (*) What happens when V is not finite-dimensional?

Bonus Exercise 1.5: There are n knights sitting at a round table. Each of them has a certain amount of food in its plate. Every minute each knight takes half of the serving from each of his/her neighbors. Dinner is served at 7pm. What is the food distribution in the next morning? (Hint: use exercise 1!)