Nichtkommutative Algebra und Symmetrie SS 2019 — Ubungsblatt 11

16. Juli 2019

Informationen zur Vorlesung finden Sie unter: http://home.mathematik.uni-freiburg.de/soergel/ss19nkas.html

Exercise 11.1: Let \mathfrak{g} be a reductive Lie algebra. Show that $[\mathfrak{g}, \mathfrak{g}]$ is semisimple and that $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}] \oplus Z(\mathfrak{g})$, where

$$Z(\mathfrak{g}) = \{ x \in \mathfrak{g} \mid [x, y] = 0 \; \forall y \in \mathfrak{g} \}$$

Exercise 11.2: Show that a Lie algebra \mathfrak{g} is reductive if and only if the representation $ad : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is completely reducible (i.e. it is a direct sum of irreducible representations).

Exercise 11.3:

 Let g be a simple Lie algebra and let β(−, −) be a non-trivial bilinear form such that

$$\beta([x, y], z]) = \beta(x, [y, z])$$

for all $x, y, z \in \mathfrak{g}$. Show that β is non-degenerate.

- Assume that \mathfrak{g} is a complex simple Lie algebra and β as before. Show that β is a scalar multiple of the Killing form $\kappa(-,-)$.
- Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$. Show that $\kappa(x, y) = 2n \operatorname{Tr}(xy)$.

Exercise 11.4: Let $\mathfrak{g} = \mathfrak{sp}(2n, \mathbb{C})$ (cf. Exercise 8.2).

- Show that the set diagonal matrices $\mathfrak h$ in $\mathfrak g$ form a Cartan subalgebra of $\mathfrak g.$
- Compute the root system of \mathfrak{g} with respect to \mathfrak{h} .

Bonus Exercise 11.5: Let β be the bilinear form on \mathbb{C}^n defined by the matrix

$$B = \begin{pmatrix} & & & & 1 \\ & 0 & & 1 \\ & & \ddots & & \\ & 1 & & 0 \\ & 1 & & & \end{pmatrix}$$

(Recall that all non-degenerate bilinear forms on \mathbb{C}^n are equivalent, we choose *B* because it is more convenient). Let

$$\begin{split} \mathfrak{o}(n,\mathbb{C}) &= \{A \in \mathfrak{gl}(n,\mathbb{C}) \mid \beta(Ax,y) + \beta(x,Ay) = 0 \; \forall x,y \in \mathbb{C}^n\} = \\ &= \{A \in \mathfrak{gl}(n,\mathbb{C}) \mid A^{\perp}B + BA = 0\} \end{split}$$

- Show that the set diagonal matrices \mathfrak{h} in $\mathfrak{o}(n, \mathbb{C})$ form a Cartan subalgebra of $\mathfrak{o}(n, \mathbb{C})$.
- Compute the root system of $\mathfrak{o}(n, \mathbb{C})$ with respect to \mathfrak{h} .

Achtung: the answer varies considerably depending on the parity of n!