Nichtkommutative Algebra und Symmetrie SS 2019 — Ubungsblatt 12

18. Juli 2019

Informationen zur Vorlesung finden Sie unter: http://home.mathematik.uni-freiburg.de/soergel/ss19nkas.html

Exercise 12.1: Let \mathfrak{g} be a semisimple complex Lie algebra with Cartan subalgebra \mathfrak{h} . Show that the set of coroots α^{\vee} , for $\alpha \in R(\mathfrak{g}, \mathfrak{h})$ spans \mathfrak{h} .

Exercise 12.2: Let \mathfrak{g} be a semisimple complex Lie algebra with Cartan subalgebra \mathfrak{h} . For $\alpha \in R(\mathfrak{g}, \mathfrak{h})$ let \mathfrak{g}^{α} be the subalgebra generated by the weight spaces \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ (Recall that $\mathfrak{g}^{\alpha} \cong \mathfrak{sl}_{2}$).

- Show that if $\beta \in R(\mathfrak{g}, \mathfrak{h})$ with $\beta \neq \pm \alpha$ then $\bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{\beta+k\alpha}$ is a representation of \mathfrak{g}^{α} .
- Deduce that the set $\{k \in \mathbb{Z} \mid \beta + k\alpha\}$ is an interval in \mathbb{Z} .

Exercise 12.3: Let R be the root system of type C_n (i.e. the root system of $\mathfrak{sp}(2n,\mathbb{C})$, cf. Exercise 11.4).

- Find a system of positive root R^+ in R and a set of simple roots $\Pi(R^+) = \{\alpha_1, \alpha_2, \dots, \alpha_n\}.$
- Compute $\langle \alpha_i, \alpha_i^{\vee} \rangle$ for any i, j.
- Compute the set of fundamental weights $\{\varpi_1, \varpi_2, \dots, \varpi_n\}$ (Recall that these are defined by $\langle \varpi_i, \alpha_j^{\vee} \rangle = \delta_{i,j}$)

Exercise 12.4: Let V a vector space over a characteristic 0 field k. Let $R \subset V$ be a root system and, for $\alpha \in R$, let $\alpha^{\vee} \in V^*$ be the corresponding coroot (i.e. if $s: V \to V$ is the linear map such that $s(\alpha) = -\alpha$ and $s(\beta) - \beta \in \mathbb{Z}\alpha \ \forall \beta \in R$, then α^{\vee} is defined by $\langle \beta, \alpha^{\vee} \rangle \alpha = s(\beta) - \beta$). Show that $R^{\vee} = \{\alpha^{\vee} \mid \alpha \in R\}$ is a root system in V^* .

Bonus: Is R^{\vee} always isomorphic to R?

Bonus Exercise 12.5: Repeat Exercise 12.3 for the root system of type B_n and D_n (i.e. for the Lie algebras $\mathfrak{so}(2n+1,\mathbb{C})$ and $\mathfrak{so}(2n,\mathbb{C})$).