Nichtkommutative Algebra und Symmetrie SS 2019 — Ubungsblatt 2 24.4.2019

Informationen zur Vorlesung finden Sie unter: http://home.mathematik.uni-freiburg.de/soergel/ss19nkas.html

Exercise 2.1: Let k be a field. Match the monoids on the left with the corresponding monoid ring on the right (and show that they are isomorphic!).

1.	\mathbb{Z}	a	k[x,y]
2.	$\mathbb{N}\times\mathbb{N}$	b	$k[x,y]/(x^2-y^3)$
3.	$\{0\}\cup\{n\in\mathbb{N}\mid n\geq 2\}$	с	k[x,y]/(xy-1).

Exercise 2.2: Let k be a field and C_n be the cyclic group with n elements.

- 1. Show that $kC_n \cong k[x]/(x^n 1)$.
- 2. Assume that $(x^n 1)$ decomposes into linear factors in k[x]. Show that all irreducible representations of C_n have dimension 1.
- 3. Assume further that $n \neq 0$ in k. Then show that kC_n is isomorphic as a ring to $\underbrace{k \times k \times \ldots \times k}_{n}$.
- 4. Show that in this case all representations of C_n are semisimple.

Exercise 2.3: Let *m* be an integer and consider the \mathbb{Z} -module $\mathbb{Z}/m\mathbb{Z}$.

- 1. Write a Jordan-Hölder composition series of the \mathbb{Z} -module $\mathbb{Z}/m\mathbb{Z}$.
- 2. Show that $\mathbb{Z}/m\mathbb{Z}$ is a semisimple \mathbb{Z} -module if and only if m is square-free (that is, if p^2 does not divide m for every prime p).

Exercise 2.4: Let k be an algebraic closed field. Show that a k[x]-module M is semisimple if and only if the action of x on M is diagonalizable.

Exercise 2.5: For a ring A we denote its center by

$$Z(A) = \{ x \in A \mid ax = xa \text{ for any } a \in A \}.$$

Let k be a field. Let G be a finite group with group ring kG. Let C_1, C_2, \ldots, C_n be the conjugacy classes of G. Let $x_i = \sum_{g \in C_i} g \in kG$.

- 1. Show that $x_i \in Z(kG)$.
- 2. Show that $\{x_i\}_{1 \le i \le n}$ is a basis of Z(kG) as a k-vector space.