Nichtkommutative Algebra und Symmetrie SS 2019 — Ubungsblatt 4 22. Mai 2019

Informationen zur Vorlesung finden Sie unter: http://home.mathematik.uni-freiburg.de/soergel/ss19nkas.html

Exercise 4.1: Let k be a field and G be a group. Let V and W be representations of G.

1. Show that

$$g \cdot (v \otimes w) = gv \otimes gw$$
 for all $g \in G, v \in V$ and $w \in W$

defines a representation of G on $V \otimes_k W$.

2. Assume that V and W are finite dimensional. Show that

$$\chi_{V\otimes W}(g) = \chi_V(g)\chi_W(g)$$

for all $g \in G$.

Exercise 4.2: Let Q_8 be the quaternion group with 8 elements $\{1, -1, i, -i, j, -j, k, -k\}$ where the multiplication is defined as follows:

$$(-1)^2 = 1$$
, $(-1)x = -x$ for all x
 $i^2 = j^2 = k^2 = -1$
 $ij = k, \ jk = i, \ ki = j$
 $ji = -k, \ kj = -i, \ ik = -j$

Compute the character table of Q_8 .

(Hint: (-1) is central, and $Q_8/\{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$). Compare it with the character table of D_4 . Does the character table determine the group?

Exercise 4.3: Let G be a finite group and let χ be the character of a finite dimensional representation of G over \mathbb{C} . Show that

$$N := \{ g \in G \mid \chi(g) = \chi(1) \}$$

is a normal subgroup of G.

Hint: $\chi(g)$ is the sum of (hom many?) roots of unity.

Exercise 4.4: Recall the character table of the symmetric groups S_3 and S_4 from Exercise 3.2. Use Satz 3.1.2 from the lecture notes to identify each irreducible representation of S_3 and S_4 with the corresponding Young diagram.