Nichtkommutative Algebra und Symmetrie SS 2019 — Ubungsblatt 6

29. Mai 2019

Informationen zur Vorlesung finden Sie unter: http://home.mathematik.uni-freiburg.de/soergel/ss19nkas.html

Exercise 6.1: Consider the following groups:

$$GL(n, \mathbb{R}), \quad SL(n, \mathbb{R}) = \{ M \in GL(n, \mathbb{R}) \mid \det(M) = 1 \},\$$

 $O(n,\mathbb{R}) = \{ M \in GL(n,\mathbb{R}) \mid {}^{t}MM = Id_n \}.$

Which one of them is compact?

Bonus: What about the groups $O(n, \mathbb{C})$ and $U(n, \mathbb{C}) = \{M \in GL(n, \mathbb{C}) \mid {}^{t}\overline{M}M = Id_{n}\}$?

Exercise 6.2: Write down a Haar measure for the group \mathbb{C}^* .

Exercise 6.3: Write down a Haar measure for $GL(n, \mathbb{C})$. Is it right invariant?

Hint: Recall that if \mathcal{L} is the Lebesgue measure on \mathbb{R}^m and $A \in GL(m, \mathbb{R})$, then $\mathcal{L} \circ A = \det(A) \cdot \mathcal{L}$. Embed $GL(n, \mathbb{C}) \subset \mathbb{R}^{2n^2}$. What is determinant of the linear map induced by the multiplication of a matrix on \mathbb{R}^{2n^2} ?

Exercise 6.4: Let G be an abelian compact group. Show that all the indecomposable finite dimensional representations over \mathbb{C} of G are of dimension one.

Exercise 6.5: Write down all the finite-dimensional irreducible representations over \mathbb{C} of the group $S^1 := \{z \in \mathbb{C}^* \mid |z| = 1\}.$