10. Übungsblatt

Abgabe: Am Dienstag, den 15.7.2014 im Kasten Ihrer Übungsgruppe

Aufgabe 1:

- i) Jede freie Operation einer endlichen Gruppe auf einem Hausdorff-Raum ist topologisch frei.
- ii) Ist X ein topologischer Raum mit einer topologisch freien Operation einer Gruppe G und ist $H \subseteq G$ eine Untergruppe, so ist auch $X/H \twoheadrightarrow X/G$ eine Überlagerung.

4 Punkte

Aufgabe 2: Man zeige, dass die Linksoperation eines Monoids G auf sich selbst einen Isomorphismus induziert zwischen dem Monoid G und dem Monoid der Endomorphismen der G-Rechtsmenge G, in Formeln also einen Isomorphismus

$$G \cong (\operatorname{Ens} - G)(G), \quad g \mapsto (g \cdot)$$

4 Punkte

Aufgabe 3: Das Quadrat $[0,1]^2$ ist einfach zusammenhängend. Hinweis: Man orientiere sich am Fall n=1.

Aufgabe 4:

- i) Zeigen Sie, dass Verknüpfungen von natürlichen Transformationen wieder natürliche Transformationen sind.
- ii) Seien \mathcal{A} , \mathcal{B} , \mathcal{C} Kategorien, $F,G:\mathcal{A}\to\mathcal{B}$ Funktoren und $\nu:F\to G$ eine natürliche Transformation. Ist $H:\mathcal{B}\to\mathcal{C}$ ein weiterer Funktor, so liefert $H\circ\nu$ eine natürliche Transformation von $H\circ F$ zu $H\circ G$.
- iii) Sei G eine Gruppe. Wir können G die Ein-Objekt Kategorie [G] zuordnen, deren Morphismen die Elemente von G sind, mit der Verknüpfung in G als Verknüpfung von Morphismen. Zeigen Sie:

$$G - \text{Ens} = \text{Cat}([G]; \text{Ens})$$

Hierbeit ist Cat([G]; Ens) die Kategorie aller Funktoren von [G] in die Kategorie der Mengen.

4 Punkte