Introduction to differential topology Homework 3

Problem 1. Let M and N be two disjoint oriented closed submanifolds of \mathbb{R}^k s.t. dim M + dim N = k - 1. Define the map $f: M \times N \to S^{k-1} \subset \mathbb{R}^k$ as $f(x, y) := \frac{x-y}{\|x-y\|}$. The number deg f is called the *linking number* of M and N.

Let $M = N = S^1$, embed the first circle in \mathbb{R}^3 as $(\cos \varphi, \sin \varphi, 0)$ and the second one as $(\cos \psi + 1, 0, \sin \psi)$; such a link is called a *Hopf link*. Compute the linking number of the Hopf link.

Problem 2. Let M be a closed oriented submanifold of \mathbb{R}^{m+1} of codimension one. Define the $Gau\beta map \ G: M \to S^m$ by sending a point x to the unit normal vector to M at x pointing outwards.

Embed the torus $S^1 \times S^1$ into \mathbb{R}^3 by $((2 + \sin \psi) \cos \varphi, (2 + \sin \psi) \sin \varphi, \cos \psi)$. Compute the degree of its Gauß map.

Problem 3. Recall from the lecture that a complex polynomial p(z) gives rise to a smooth map $\mathbb{CP}^1 \to \mathbb{CP}^1$. Likewise, if q(z) is another polynomial, then the rational function $\frac{p(z)}{q(z)}$ also gives rise to a map $f: \mathbb{CP}^1 \to \mathbb{CP}^1$ (if $q(z_0) = 0$, set $f(z_0) := \infty$). Compute deg f in terms of p and q.