Introduction to differential topology Homework 4

Problem 1. Recall that a *projective line* in $\mathbb{CP}^n = \mathbb{P}(\mathbb{C}^{n+1})$ is a projectivization $\mathbb{P}(V) \subset \mathbb{CP}^n$ of a two-dimensional linear subspace $V \subset \mathbb{C}^{n+1}$.

- (1) Prove that maps $\iota_V \colon \mathbb{CP}^1 = \mathbb{P}(V) \hookrightarrow \mathbb{CP}^n$ are homotopic for all the choices of V.
- (2) Find the mod 2 intersection number of the standardly embedded \mathbb{RP}^2 and a projective line in \mathbb{CP}^{2-1} .

Problem 2. Denote by π the standard projection $S^n \to \mathbb{RP}^n$.

- (1) Prove that any map f: ℝPⁿ → ℝPⁿ admits a lift to Sⁿ, i.e. a map f̃: Sⁿ → Sⁿ s.t. π ∘ f̃ = f ∘ π.
 Hint: pick a point x ∈ Sⁿ and make a choice of f̃(x). Connect any other y ∈ Sⁿ with x by a path γ and use γ to define f̃(y). Conclude by showing that f̃(y) is independent of γ.
- (2) Prove that any map $g \colon \mathbb{RP}^{2n} \to \mathbb{RP}^{2n}$ has a fixed point. Hint: argue by contradiction.
- (3) For any n, construct a map $g: \mathbb{RP}^{2n-1} \to \mathbb{RP}^{2n-1}$ without fixed points.

Problem 3. Let p be a non-degenerate fixed point of $f: M \to M$. Choose a coordinate chart $\varphi: U \xrightarrow{\sim} \mathbb{R}^n$ around p and set $g := \varphi \circ f \circ \varphi^{-1}$. Let $B \ni \varphi(p)$ be a ball small enough that it doesn't contain other fixed points of g. Prove that Lefschetz sign sgn x equals deg α , where $\alpha: \partial B \to S^{n-1}$ sends x to $\frac{x-g(x)}{|x-g(x)|}$.

Problem 4. Prove that the Lefschetz number of a map $f: S^2 \to S^2$ equals deg f + 1. *Hint: find a nice representative in each homotopy class.*

¹By the previous part, it is well-defined.