Introduction to differential topology Homework 6

Problem 1. Construct a vector field on S^{2n-1} without zeroes.

Problem 2. Let (X, A) be a topological pair and $f, g: A \to Y$ be two homotopic maps. Prove that $X \sqcup_f Y$ is homotopy equivalent to $X \sqcup_g Y$.

Problem 3. Prove that the following topological spaces are homotopy equivalent to the wedge of spheres of the same dimension 1 (in particular, find this dimension and the number of spheres in the wedge) 2 .

(1) Oriented surface of genus g without n points.

Hint: play with small values of g and n first.

- (2) \mathbb{R}^3 without two intersecting lines.
- (3) \mathbb{RP}^3 without two points.
- (4) \mathbb{C}^4 without two complex 2-planes: $\{z_1 = z_2 = 0\}$ and $\{z_3 = z_4 = 0\}$.

Problem 4.

(1) Define the real *Grassmanian* $G_{k,n}$ as a set of k-dimensional subspaces in \mathbb{R}^n . Prove that $G_{k,n}$ is a smooth manifold.

Hint: Any $X \in G_{k,n}$ is a graph of $A: U \to V$, where $U \subset \mathbb{R}^n \supset V$, dim U = k, dim V = n-k. In the rest of this exercise we will start, but not finish, constructing Schubert cell decomposition of $G_{k,n}$.

- (2) Start by showing that a map col: $\{A \in \operatorname{Mat}_{n,k} \mid \operatorname{rank} A = k\}/GL_k \to G_{k,n}$ that sends A to its column space is well-defined and a bijection. Then prove that every coset in the source admits a unique representative B s.t.
 - If some row of B contains 1, then other entries in this row are 0's.
 - All entries of B below any 1 are 0's.
 - Suppose $B_{i,j} = B_{i',j'} = 1$. Then $i > i' \implies j < j'$.

Hint: up to minor differences, this is what known in linear algebra as reduced row echelon form.

We define the integer σ_i (for $1 \leq i \leq k$) by the condition $B_{\sigma_i,k-i} = 1$. The increasing sequence $\sigma = (\sigma_i)_{i=1}^k$ is called the *Schubert symbol* of col $B \in G_{k,n}$.

(3) (Open Schubert cells.) Prove that there are $\binom{n}{k}$ different Schubert symbols that arise in the above way. Show that $\{X \in G_{k,n} \mid \sigma(X) = \dot{\sigma}\}$ is homeomorphic to a Euclidean space and compute its dimension in terms of the Schubert symbol $\dot{\sigma}$.

Hint: it is instructive to work out the case $G_{2,4}$ *first.*

- (4) (Invariant definition of a Schubert symbol.) Prove that for $X \in G_{k,n}$ the number $\sigma_i(X)$ equals the unique number satisfying the condition dim $X \cap \mathbb{R}^{\sigma_i - 1} + 1 = \dim X \cap \mathbb{R}^{\sigma_i} = i^3$
- (5) Equip \mathbb{R}^n with the standard inner product. Define $H^l := \{(x_1, \ldots, x_l, 0, \ldots, 0) \in \mathbb{R}^l \mid x_l > 0\}$. Prove that each $X \in G_{k,n}$ admits a unique orthogonal basis (v_1, \ldots, v_k) s.t. $v_i \in H^{\sigma_i(X)}$.

¹i.e. several disjoint spheres with their north poles all identified

 $^{^{2}}$ You don't have to write formulas in coordinates for all the homotopies involved, but their definitions should be clearly stated.

³We think of \mathbb{R}^l as the span of the first *l* basis vectors in \mathbb{R}^n .