Introduction to differential topology Homework 7

Problem 1. Choose an integer m > 1 and integers q_1, q_2 s.t. $gcd(q_i, m) = 1$. The generator of the cyclic group $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ acts on $S^3 \subset \mathbb{C}^2$ by $(z, w) \mapsto (e^{2\pi i q_1/m} z, e^{2\pi i q_2/m} w)$. This extends to the action of \mathbb{Z}_m on S^3 and the quotient is called the *lens space* $L(q_1, q_2)$. Find the cell decomposition of $L(q_1, q_2)$ with one cell in each dimension and describe the attaching maps. **Problem 2.** For a topological space X, define the *n*-th symmetric power of X, $SP^n(X)$, as

 X^n/Σ_n , where Σ_n is the symmetric group on *n* letters, which naturally acts on the *n*-fold Cartesian product X^n .

Find the cell decompositions of $SP^2(S^1)$ and $SP^3(S^1)$ and describe the attaching maps.

Problem 3. Let X and Y be two homotopy equivalent CW complexes s.t. both don't have (n + 1)-cells. Prove that their *n*-skeletons are also homotopy equivalent.

Problem 4. A topological space is called an *H*-space is there is 1) a continuous map $\mu: X \times X \to X$ (called multiplication) and 2) an element $e \in X$ (called identity) s.t. two maps $x \mapsto \mu(x, e)$ and $x \mapsto \mu(e, x)$ from X to itself are homotopic to id_X (through maps that preserve e).

Prove that multiplication in $\pi_n(X, e)$ can be defined as $(f + g)(x) := \mu(f(x), g(x))$.