
NOTES ON DIFFERENTIAL TOPOLOGY

1. Recap on smooth manifolds

We start with a brief overview of smooth manifolds.

Definition 1.1. A smooth n-dimensional manifold is a set M together with

(1) decomposition M =
⋃

i Ui into at most countable number of subsets (called charts),

(2) an injection φi : Ui ↪→ Rn, s.t. φi(Ui) is open and for every intersection Ui ∩Uj the map
φi ◦ φ−1

j : φj(Ui ∩ Uj) → Rn is a smooth map from one open subset of Rn to the other
(it is called a transition map).

The above data equips the set M with topology: the base consists of preimages of open
subsets of Rn. We will always assume that M is Hausdorff, i.e. every two points have disjoint
neighborhoods. Every chart equips the corresponding open subset of M with local coordinates
coming from Rn (and hence called coordinate mapping).

Example 1.2. An open set U ⊂ Rn is smooth, with a single chart.

Example 1.3. An n-sphere Sn is a manifold given by the equation x20 + · · · + x2n = 1 in
Rn+1. Indeed, cover it with 2 charts UN = Sn \ N and US = Sn \ S, where N = (0, . . . , 0, 1)
and S = (0, . . . , 0,−1). Maps φN,S are given geometrically as sterographic projections to the
hyperplane {xn = 0}. To understand the transition maps, note first that for any p ∈ UN ∩ US

the points φN(p) and φS(p) are proportional as vectors in the subspace {xn = 0}. The problem
is thus reduced to the plane spanned by 0, N and φN(p). Looking at right triangles in this
plane one concludes ∥φN(p)∥∥φS(p)∥ = 1 (here ∥(x0, . . . , xn−1)∥ =

√
x20 + · · ·+ x2n−1). The

transition map is therefore (yN0 , . . . , y
N
n−1) =

1
∥φN (p)∥2 (y

S
0 , . . . , y

S
n−1), where y

N and yS are local

coordinates on the sphere arising from two charts. This map is indeed smooth.

Example 1.4. Consider {xy = c} ⊂ R2. It c ̸= 0 it can be covered by two charts U+ = {x > 0}
and U− = {x < 0} with coordinate mapping φ±(x, y) = x. Since U+∪U− = ∅, there is nothing
to check. If c = 0 the point (0, 0) doesn’t have a neighborhood homeomorphic to open subset
of R since its complement has 4 connected components. Thus {xy = 0} is not a 1-manifold
and, as can be easily checked, not a manifold at all.

Definition 1.5. A map F : M → N is called smooth at p ∈ M if for some open U ∋ p s.t.
U ⊂ Ui ⊂ M (for some chart Ui ⊂ M) and f(U) ⊂ Vj ⊂ N (for some chart Vj ⊂ N) the
composite ψj ◦F ◦φi : φi(U) → Rn is smooth. A map F is called smooth if it’s smooth at every
point p ∈M .

Remark 1.6. This definition should be checked for correctness in a sense that it doesn’t depend
on the choice of Ui and Vj.

Definition 1.7. A path in M is a smooth map γ : (−1, 1) → M . Two paths γ1 and γ2 s.t.

γ1(0) = γ2(0) are called equivalent if for some chart U ∋ γ1(0) one has d(φγ1)
dt

(0) = d(φγ2)
dt

(0)1.

Remark 1.8. Again, independence of choice of a particular chart should be checked.

1For a path in Rn by dγ
dt we mean (dγ

1

dt , . . . ,
dγn

dt ), where γi(t) are coordinates of γ(t).
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Definition 1.9. The tangent space at p to M is the set TpM of equivalence classes of paths γ
s.t. γ(0) = p (notation: [γ]). The tangent space to M , TM , is

⋃
p∈M TpM .

Example 1.10. M = R2, γ1(t) = (cos(t), sin(t)), γ2(t) = (0, t). We have dγ1
dt
(0) = dγ2

dt
(0) =

(0, 1), so the two paths are indeed equivalent, as suggested by the fact that one is the tangent
line to the other.

Example 1.11. If M ⊂ Rn is given (locally, if necessary) by some equations, then TpM can
be canonically identified with the tangent space in the “usual” sense. Say, for Sn−1 ⊂ Rn one
has TpS

n−1 = {v ∈ Rn | v ⊥ p}

Proposition 1.12. TM is a smooth 2n-manifold.

Proposition 1.13. TpM is a vector space w.r.t. the following operations:

(1) c · [γ] := φ−1 ◦ (cφ) ◦ γ,

(2) [γ1] + [γ2] := φ−1 ◦ ((φ ◦ γ2) + (φ ◦ γ1)).

Remark 1.14. Independence of representatives of equivalence classes should be checked.
For a chart U ∋ p s.t. φ(p) = 0 we denote by ∂

∂xi
∈ TpM the tangent vector [γ(t)], where

γ(t) = φ−1(0, . . . , t, . . . , 0). Local coordinates give rise to coordinates in the tangent space:

Proposition 1.15. (1) { ∂
∂xi

}i is basis of TpM .

(2) [γ(t)] = dφ1(t)
dt

∂
∂x1

+ · · ·+ dφn(t)
dt

∂
∂xn

Definition 1.16. For a smooth map F : M → N the differential of F at p ∈ M is the map
dFp : TpM → TF (p)N defined as dFp([γ]) := [F ◦γ]. Differential of F is the map dF : TM → TN
defined as dF (p, v) = dFp(v), where v ∈ TpM .

Remark 1.17. Differential is sometimes called derivative.

Proposition 1.18. The map dFp is linear.

Proposition 1.19. Choose local coordinates (x1, . . . , xm) near p and (y1, . . . , yn) near F (p).
The map F : M → N is given by n functions of m variables, i.e. yi = fi(x1, . . . , xm), 1 ⩽ i ⩽ n.
In the above-mentioned basis, the map dFp is given by

∂f1
∂x1

. . . ∂f1
∂xm

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xm

 .

This matrix is called Jacobi matrix.

2. Critical and regular values

One way to study maps is by looking at preimages of points (or, more generally, subsets). It
turns out that the behavior of a preimage (as point varies) can be read off from the differential.

Definition 2.1. The point p ∈ M is called critical point if dFp : TpM → TF (p)N is not surjec-
tive; F (p) is then called a critical value. If x ∈ N is not a critical value, it’s called a regular
value.

Example 2.2. For F : Rn → Rn−1, F (x1, . . . , xn) = (x1, . . . , xn−1) all the points in Rn−1 are
regular and ker dFp = ⟨ ∂

∂xn
⟩ (for any p). For F |Sn−1 : Sn−1 → Rn−1, the differential is not

surjective whenever it has a kernel. As follows from the above, this happens precisely when
p ∈ Sn−2 = {(x1, . . . , xn) ∈ Sn−1 | xn = 0}. This equatorial Sn−2 is the set of both critical
points and values of F |Sn−1 .
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Example 2.3. (Fold.) F : Rn → Rn, F (x1, . . . , xn) = (x21, . . . , xn). Again, both critical sets are
{x1 = 0} ⊂ Rn since dFp = diag(2x1, 1, . . . , 1) (for any p).

Example 2.4. (Pleat.) F : R2 → R2, F (x1, x2) = (x31 + x1x2, x2) (target space has coordinates
(y1, y2)). Jacobi matrix is

J =

(
3x21 + x2 x1

0 1

)
,

its determinant is 3x21 + x2 =
∂y1
∂x1

. To visualize critical points/values, consider R3 with coordi-

nates (x1, x2, y1)
2 and the graph of y1 = x31+x1x2 in it. Equip this graph itself with coordinates

(x1, x2). Then the critical points of its projection to the plane (x2 = y2, y1) are precisely the
critical points of F , i.e. (x1, x2) s.t. ∂y1

∂x1
= 0; the same goes for the set of critical values. To

understand this graph, look at crossections at various x2. If x2 > 0, we get a cubic curve in the
plane (x1, y1) with non-vanishing derivative. If x2 < 0, we get a cubic curve with two critical
points (that go apart as x2 decreases further). The set of critical points is a smooth curve, that
expectedly projects to a parabola 3x21 + x2 = 0 on the (x1, x2) plane.

To get the parametric description of the critical values, express both coordinates as functions
of x1: y2 = x2 = −3x21, y1 = x31 + x1x2 = −2x31. This parametric curve is given by algebraic
equation y21 = 4

27
y32 and is called a semicubical parabola.

Recall that B ⊂ Rn is said to have Lebesgue measure 0 if ∀ϵ > 0 in can be covered by
a countable number of balls of total volume ϵ. It follows from this condition that Rn \ B is
everywhere dense.

Definition 2.5. A subset B ⊂ M is said to have measure 0 if φ(U ∩ B) ⊂ Rn has measure 0
for any chart U ⊂M .

Remark 2.6. Note that we don’t speak of measures other than zero. Diffeomorphism of Rn

preserves the property of being measure 0, but in general distorts measure.

Theorem 2.7. (Sard) The set of critical values of a smooth map has measure 0.

Remark 2.8. We omit the proof, since it is of analytical nature and the ideas it is based on
don’t show up later.

Corollary 2.9. Regular values exist.

Remark 2.10. Even though the corrolary is much weaker, there seem to be no way to derive
it by simpler means.

Definition 2.11. The map F : M → N is called a smooth embedding if

(1) F is a topological embedding 3 and

(2) dFp is injective for any p ∈M .

Definition 2.12. The map F : M → N is called a diffeomorphism if ∃G : N →M s.t. F ◦G =
IdN and G ◦ F = IdM .

Theorem 2.13. (Inverse function theorem.) If for F : M → N the differential dFp is isomor-
phism for some p, then it is a local diffeomorphism 4.

Proof. Find U s.t. both U and F (U) belong to some charts. Now apply the classical inverse
function theorem to ψ ◦ F ◦ φ−1 : φ(U) → Rn. □

2The order of these 3 coordinates is irrelevant, since we orient axes non-standardly anyway.
3i.e. it is a homeomorphism onto its image. The standard injective non-example is [0, 1) ↪→ S1.
4i.e. ∃U ∋ p s.t. F |U : U → F (U) is a diffeomorphism.
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Theorem 2.14. (Regular value theorem.) Let F : M → N be a smooth map, m ⩾ n and
y ∈ N a regular value. Then f−1(y) is a smooth submanifold of M of dimension m− n.

Proof. For x ∈ f−1(y) we will find a coordinate neighborhood. Checking that transition maps
are smooth is an exercise. DenoteK = ker dFx, choose a chart U ∋ x and define G : U → N×K
byG(p) := (F (p), projK◦φ(p)). Calculate dGx = (dFx, projK◦dφx) and observe that this map is
an isomorphism — indeed, K = ker dFx is mapped isomorphically onto the second component.
Apply inverse function theorem to get a local inverse G−1 : V

∼−→ U , where V is a neighborhood
of y (replace U with a smaller subset if necessary.)

Now consider a subset {y} ×K ∩ V ⊂ V . On the one hand, it is mapped homeomorphically
by pr2 : V × K → K onto an open subset of K ≃ Rm−n. On the other hand, it is mapped
homeomorphically by G−1 to U ∩ F−1(y) ∋ x. Combining these, we get that U ∩ F−1(y) is the
desired neighborhood. □

Example 2.15. For f : Rn → R, f(x1, . . . , xn) = x11 + · · · + x2n any y ̸= 0 is regular, so we get
another proof that Sn−1 = f−1(1) is a manifold.

Definition 2.16. The definition of a smooth manifold with boundary (M,∂M) mimics that of
a smooth manifold, except for the fact that the notion of a coordinate neighborhood depends
on where exactly p ∈M lies:

(1) If p ∈M \ ∂M , the neighborhood U is an open subset of Rn (as before),

(2) If p ∈ ∂M , the neighborhood U is an open subset of {(x1, . . . , xn) ∈ Rn | xn ⩾ 0} and,
moreover, φ(p) ∈ {xn = 0}.

Proposition 2.17. In the notations above, ∂M is an (dimM − 1) manifold.
Likewise, all the notions from the beginning are translated to into the setting of manifolds

with boundary. If a manifold has non-empty boundary, it will be assumed to be compact.
Compact manifold without boundary is called closed.

Example 2.18. The disk Dn = {x21 + · · ·+ x2n ⩽ 1} is manifold with boundary (Dn, Sn−1).

Remark 2.19. Manifolds with boundary appear much less often in practice, but are of equal
theoretical importance as boundaryless manifolds.

The proof of the following statement goes along the same lines as in the boundaryless case.

Proposition 2.20. Let F : (M,∂M) → N,m ⩾ n be a smooth map s.t. y ∈ N is a regular
value for both f and f |∂M . Then (f−1(y), f−1(y) ∩ ∂M) ⊂ (M,∂M) is a smooth submanifold
with boundary.

Theorem 2.21. There is no map F : M → ∂M that leaves ∂M fixed.

Proof. (Due to Hirsch.) Suppose the contrary. Choose a regular value y ∈ ∂M . By the above,
(F−1(y), F−1(y) ∩ ∂M) is a smooth 1-manifold with boundary. Moreover, since F |∂M = id∂M ,
it has a single boundary point. A contradicion.5 □

Theorem 2.22. (Smooth Brouwer fixed point theorem.) Any smooth map g : Dn → Dn has a
fixed point.

Proof. Suppose it doesn’t. Consider a ray starting at g(x) and passing through x. Let f(x) be
a point where this ray intersects Sn−1. We have obtained a map f : Dn → Sn−1 (its smoothness
is an exercise) s.t. f |Sn−1 = id, a contradiction. □

5Here we used the classifcation of complact 1-manifolds: they are either S1 (the boundary is empty) or
([0, 1], 0 ⊔ 1).
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Definition 2.23. The map F : M → N is called transversal to a submanifold P ⊂ N if

rank(TxM
dFx−−→ TF (x)N → TF (x)N/TF (x)P) = n− p. Notation: F ⋔ P .

Example 2.24. If P is a point we recover the definition of a regular point.

Example 2.25. If F is an embedding, the condition can be reformulated as TxM+TxP = TxN
(the sum doesn’t have to be a direct sum, i.e. m+ p can be greater than n). One then writes
M ⋔ P . It is an exercise to check that M ⋔ P ⇔ P ⋔M .

The following is in the exercise sheet and can proven analogously to Theorem 2.14.

Theorem 2.26. For F : M → N and P ⊂ N suppose that F ⋔ P . Then F−1(P ) is a
submanifold of M of dimension m+ p− n.

3. Approximations

Our goal here is to make sense of and prove statements of the following type: a map from
a wider class (e.g. a continuous one) can be approximated by a that from a smaller class (e.g.
by a smooth one) with any given error.

We start by recalling notions and facts from analysis.

Theorem 3.1. (Existence of bump functions.) Consider K ⊂ U ⊂ Rn, where K is compact
and U is open. Then there exists a smooth φ : Rn → R s.t. φ(K) = 1 and φ(Rn \ U) = 0.

Remark 3.2. Such a function φ is almost never analytical.

Definition 3.3. Let {Ui} be an open conver of M . A partition of unity subordinate to {Ui} is
a set of smooth maps λi : M → [0, 1] s.t.

(1) suppλi ⊂ Ui,

(2) suppλi is locally finite,

(3)
∑

i λi = 1.

Theorem 3.4. For any open cover of M there exists a subordinate partion of unity.

From now on till the end of this section we assume the source manifold M to be compact
for simplicity6; many statements hold in greater level generality after the necessary minor
adjustments.

Let Ck(M,N) denote the set of maps of differentiability class k (0 ⩽ k ⩽ ∞); we write
C(M,N) for C0(M,N). Eventually we will only care about k = 0,∞.
The following steps define topology on Ck(M,N).

(1) Assume first that k < ∞. Choose f ∈ C∞(M,N), a chart (U,φ) on M , a chart (V, ψ)
on N , a compact K ⊂ U s.t. f(K) ∈ V and ε > 0.

(2) Define

N (f, (U,φ), (V, ψ), K, ε) := {g ∈ Ck(M,N) | g(K) ⊂ V, Dk(ψfφ−1 − ψgφ−1) < ε},

where the notation Dk(α) < ε means that all the partial derivatives of α up to order k
are less than ε at every point x in the domain of α. We say such g is ε-close to f (w.r.t.
all the choices).

(3) Declare the sets N for all the possible choices to be the prebase7 for the topology on
Ck(M,N).

6For the target manifold N this assumption is not needed since the image of a compact is compact.
7Also known as subbase.
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(4) For the remaining case k = ∞ define a topology as the union of the induced topologies
w.r.t. all the injections C∞(M,N) ↪→ Ck(M,N).

Remark 3.5. The definition is abstract. We will only need it to prove that a certain subset
S ⊂ Ck(M,N) is dense, i.e. any open W ∋ w contains a point s ∈ S. Since any open set is
the union of those from the base of the topology, it is safe to assume that W itself belongs to
the base. Since an open set from the base is the finite intersection

⋂
i Ni(fi, . . . ) of those from

the prebase, it is safe to assume (by taking the minimum) that ε is the same for all i. All of
this boils down the task to finding s that would be ε-close to each fi (for any ε). In turn, this
will be achieved by finding s that would be ε-close to w (for any ε) and then using the triangle
inequality.

Our next goal is Theorem 3.8, for which the following partial case is the main step.

Theorem 3.6. The set C∞(M,Rn) is dense in C(M,Rn).

Proof. We are given a locally finite cover {Vα}α of M , a number εα > 08 and f ∈ C(M,Rn).
We want to find g ∈ C∞(M,Rn) s.t. |f − g| < εα on Vα.
For any x ∈ M set δx = minVα∋x εα. Choose Ux so that |f(y) − f(x)| < δx for any y ∈ Ux.

Define a constant function gx : M → Rn as gx(y) := f(x). Relabelling the indices, we have
found a cover {Ui}i of M and maps gi : M → Rn s.t. if y ∈ Ui ∩ Vα, then |gi(y)− f(y)| < εα.

Let {λi}i is a partition of unity subordinate to {Ui}i. Define g : M → Rn as g(y) := Σiλi(y)gi.
Then

|f − g| = |Σiλif − Σiλigi| = |Σiλi(f − gi)| ⩽ Σiλi|f − gi|.

Suppose y ∈ Vα. If λi(y) > 0 for some i, then y ∈ Vα ∩Ui and we thus have (Σiλi|f − gi|)(y) <
Σiλiεα = εα. □

To derive the general case we will use the following fact. For a closed submanifold K ⊂ M
there is an open subset T ⊃ K and a smooth surjective map π : T → K s.t. π−1(p) ≃ Rm−k for
any p ∈ K.

Remark 3.7. In fact T and π can be chosen so that they form an (m − k)-dimensional real
vector bundle over K. In such a case T is called a tubular neighborhood of K in M . We will
use this term for convenience (the only property that will actually be used is stated before the
remark).

Theorem 3.8. (Continuous map can be approximated by a smooth one.) The set C∞(M,N)
is dense in C(M,N).

Proof. Embed N in Rk and view the given f ∈ C(M,N) as a map from M to Rk. Let T be a
tubular neighbborhood of N in Rk and replace it with a smaller one for which |p− π(p)| < ε/2
(distance is measured w.r.t. embedding in Rk). Approximate f by a smooth g s.t. g is ε/2-close
to f and g(M) ⊂ T . The map π ◦ g is now the desired one. □

Corollary 3.9. (Continuous Brouwer fixed point theorem.) Any continous map G : Dn → Dn

has a fixed point.

Proof. Suppose not. Equip Dn with some coordinates and set µ := minx∈Dn |G(x) − x|. Find
a smooth F : Dn → Dn s.t. |F − G| < µ. Then F also doesn’t have a fixed point, which
contradicts Theorem 2.22. □

For the corollary below we need the following definiton.

8Since for us M is compact, one could have chosen a single ε for all the covering sets, but this doesn’t simplify
the proof much.
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Definition 3.10. A simplex in Rn is a topological subspace ∆n = {x1 + · · · + xn = 1, xi ⩾
0} ⊂ Rn.

We leave as an exercise that ∆n is homeomorphic to Dn (note, however, that it is not a
smooth submanifold of Rn).

Corollary 3.11. (Perron-Frobenius theorem.) Let M be a real matrix with non-negative
entries. ThenM has an eigenvector with non-negative coordinates and non-negative eigenvalue.

Proof. Assume M is non-singular since otherwise the statement is trivial. The matrix M gives
rise to a map M : Rn → Rn. By assumption M(Rn

⩾0) ⊂ Rn
⩾0, where Rn

⩾0 = {xi ⩾ 0}. This
allows to define a map f : ∆n → ∆n as f(x) := ⟨Mx⟩ ∩∆n9. By Corollary 3.9 the map f has
a fixed point, which is the desired vector. □

9By ⟨v⟩ we mean the one-dimensional subspace generated by v.
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