TOPOLOGICAL DATA ANALYSIS

MISHA TEMKIN

Foreword. Topological data analysis is a pipeline of several notions from pure mathematics.
It is impossible to cover all of them in a rigourous way in one term (algebraic topology alone
requires two). The chosen approach is to blackbox some of the definitions (and, more con-
ventionally, theorems), providing a supply of examples, presumably sufficient to acquire an
intuition.

1. SIMPLICIAL COMPLEXES

Basic definitions. We start with pure combinatorics. By 2™ one denotes the power set of
M, i.e. the set of all subsets of M.

Definition 1.1. Let M be a set. Then the subset K C 2M is called a simplicial complex on
M if

(1) if € K and J C I, then J € K;

(2) @ € K.

The set M is then called the vertex set of M and denoted by V(M). The element I € K is
called a simplex in K.

Remark 1.2. Thanks to the first condition, the second one is equivalent to K # &. Since the
empty set is always there anyways, we will omit it in writing when defining a concrete K.

In what follows we will always assume that M is finite.

Example 1.3. M = {1,2,3}, K = {{1},{3},{1,3}}. Note that the vertex 2 doesn’t belong
to K (more formally, {2} ¢ K). We'll call such vertices illusory.

Non-example 1.4. M = {1,2,3}, K = {{1},{2},{3},{1,2,3}}.

Example 1.5. K = 2™, This simplicial complex is called a simplez on M and denoted by
Ay Tts boundary is defined as OAy = Ay \ M.

By [n] one denotes the set {0,1,...,n}; one writes A, for Ap,. The number /]| — 1 is called
the dimension of the simplex I; one then says that [ is an (|| — 1)—simplex. Such a notion is
explained by the following geometrical standpoint on simplicial complexes.

Definition 1.6. Geometrical n-simplex is the subset {(zo, ..., z,) | Y gz =1, Viz; > 0} C R
Its verticies are points with x; = 1 for some i € [n].

Example 1.7. Cases n = 0, 1,2 evidently give a point, a segment and a triangle respectively.
One can see that the case n = 3 gives a (solid) tetrahedron, by say, projecting it onto {x3 =
0} =R3 C R.

Remark 1.8. For any subset J C [n] the set of points of geometrical n—simplex satisfying the
condition z; = 0 Vj € J is a geometrical (n— |J|)—simplex. Its verticies are (n —|J|+1) points
with z; = 1 for some ¢ € [n] \ J and z; =0Vj € J.
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Definition 1.9. Let K be simplicial complex on M. Choose a bijection M = [[M| —1]'. A
geometrical realization of a simplicial complex K is the union of geometrical simplicies in R
corresponding (under the chosen bijection) to simplicies of K.

We often drop the words “geometrical realization” and think of a simplicial complex both
combinatorially and geometrically.

Definition 1.10. A simplex I C K is called mazimal w.r.t. inclusion® if pJ € K st. I C J.

Since Definition 1.1 obliges all the subsimplicies of I to belong to K as soon as I does, it is
enough to specify simplicial complex by its maximal simplicies.

Example 1.11. Although Definition 1.9 gives a direct way to view K as a subset of RIM it is
rarely of practical use. Say, consider a simplicial complex given by its two maximal simplicies:
{1,2,3} and {3,4}. Then Definition 1.9 embeds it into R*. However, it is much more illustrative
to draw it on the plane as a solid triangle with a segment sticking out of its vertex “3”.

Definition 1.12. Simplicial complex is K called pure if all its maximal simplicies are of the
same dimension (say, d). In this case d is called the dimension of K.

Topological digression. Eventually, we’ll by studying simplicial complexes from a topological
point of view. As explained in the foreword, we’re not able to be precise here. Armed with this
disclaimer, we say that topology studies nice subsets of R", called topological spaces.

Example B 1.13. ? Geometrical realization of a simplicial complex K is a topological space
(in RIM,

Example B 1.14. An n-sphere S™ = {3  2? =1} C R"*! is a topological space (in R"*1).
Cases n =1 and n = 2 give a circle and a surface of a tennis ball.

Example B 1.15. An (n+ 1)-ball B"*' = {37 27 < 1} C R™™ is a topological space.

To make this notion useful, we better define which maps between topological spaces we are
interested in*: those are called continuous maps. The name suggests informal definition: a map
f: A — B between topological spaces A and B is called continuous if continous movement of
a point a € A gives rise to a continuous movement of a point f(a) € B.

One approach to a rigourous definition is as follows. Euclidean distance in R™ allows one to speak of distances in
A C R"™. A sequence (an)n of points in A is said to converge to a € A if the sequence of distances (d(an,a)). converges
to zero. The map f: A — B is called continuous whenever if (a,)» converges to a, then (f(an))n converges to f(a).
This should be compared with Heine’s defintion of continuity of a function studied in analysis.

Finally, topology studies topological spaces considered up to a homeomorphism: A and B
are called homeomorphic whenever there is a continuous bijection between them s.t. its inverse
is also continuous®. Notation: A = B. One common informal example of a homeomorphism
is bending and twisting of a space inside R™ without tearing it apart. Note that, however, the
dimension of ambient space, n, is not important when it comes to homeomorphism. Say, in
Example 1.11 one of the two homeomorphic spaces is embedded in R* and another one in R2.

Fact B 1.16. 5"~ ! = 9A,,.

Idea of a proof. We will construct a bijective map f: A, — S™ 1. To this aim, recall that
OA, C R™ C R"*! (the latter embedding is that of an affine hyperplane " ,2; = 1). Note

n plain words, enumerate points of M from 0 to [M| — 1.

2Collogially, just maximal.

3Statements whose proofs use notions that were not defined rigorously, but rather blackboxed, end with a
blackbox.

4Just as in linear algebra the notion of a linear map is neccessary to talk about vector spaces.

This is analogous to a notion of isomorphism of vector spaces.
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that {d_7 ;i = 1} N {>1 ,(z; — 1/n)* = 1}° is homeomorphic to S"~! (excercise: construct
explicitly a map that proves it). Now that both S"~! and JA, are embedded in the same
R™ = {3 " ,x; = 1}, we define f(z) to be r(z) N S"!, where r(z) is a ray emanating from
(1/n,...,1/n) that passes through x € 0A,,. Bijectivity is easily seen by considering a similar
map in the opposite direction. (Continuity of both maps is out of our scope.) O

Remark 1.17. One similarly proves a homeomorphism B™ = A,,.

So, we found a simplicial complex which is homeomorphic to an n—sphere. We say colloqui-
ally that 0A,, provides a simplicial model for S™.

Platonic solids. In this subsection we work exclusively in R?. Introduce the following aliases:

e O-polytope” a.k.a. vertex: simply a point,
e l-polytope a.k.a. edge: a straight segment,

e 2-polytope a.k.a. face: a solid planar polygon (i.e. a triangle, a square, a pentagon,
Finally, a k—polytope which is a part of some bigger polytope is called a k—face of this bigger
one. For example, a square has four 1-faces and four O-faces. Note that a k—face is uniquely
determined by its corner verticies; we say that a k—face is spanned by its corner verticies. You
can view how the main heroes of this subsection are rotating here.

Consider now a standard solid cube in R3. It is a 3-dimensional subset of R3, whose boundary
is a union of 2-polytopes. Such a subset is called 3-polytope®. It has 8 vertices, 12 edges and 6
faces. Now pick a point p; in the interior of each face (for concreteness and nicety of pictures
one can take the middle). Define the boundary of the dual polytope as follows®:

e the verticies are p;,

e verticies p;,,...,p; span a k-face precisely when the intersection of the corresponding
faces of the initial polytope (i.e. a cube in our case) is non-empty.

This construction gives a 3-polytope with 6 verticies, 12 edges and 8 faces, called octahedron.
Applying this construction to octahedron gives one a cube back (check it). This justifies the
name: duality applied twice usually outputs the object one started with'®. Note that the
boundary of an octahedron is a pure 2-dimensional simplicial complex, since each of its k—face
is actually a k—simplex.

The dual of a tetrahedron is a tetrahedron itself (check it). Surely, as discussed above, it is
also a simplicial complex.

Finally, consider the dodecahedron (a Wikipedia picture where all of its verticies are seen is
here). Unlike cube, it is not so easy define rigoursly; say, one can list explicitly the coordinates
of all its vertices, but this is not illuminating. Some of the illuminating constructions require
geometry and are out of our scope. At any rate, as seen from the picture, it has 20 vertices,
30 edges and 12 pentagonal 2-faces. Careful construction of the dual polytope described above
gives an icosahedron (picture is here). Note that its boundary is a pure 2-dimensional simplical
complex. Check that the dual of icosahedron is expectedly a dodecahedron.

To summarize, we have 5 3-polytopes, called Platonic solids: one self-dual, 4 others split into
two dual pairs. The boundaries of three of the five (tetrahedron, octahedron and icosahedron)
are 2-dimensional simplicial complexes. They provide 3 simplicial models for S2.

6The second set is a (shifted) n—sphere.

7“k—polytope” is a shortening of “k—dimensional polytope”.

8We don’t give the formal definition, since it’s not needed for a handful of examples of polytopes that we will
consider.

9Dual polytope itself is the shape enclosed by this boundary.

10Compare with the notion of dual of a finite-dimensional vector space in linear algebra.


https://www.britannica.com/science/Platonic-solid
https://en.wikipedia.org/wiki/Regular_dodecahedron#/media/File:Dodecahedron.svg
https://en.wikipedia.org/wiki/Regular_icosahedron#/media/File:Icosahedron.jpg
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Higher-dimensional analogs. Here we’ll be working with n—polytopes in R" = (z1,...,x,).
The terminology is consistent with the previous subsection if one adopts the convention that
“face” is a shortening of “(n — 1)-face”. In what follows it is important and instructive to first
substitute n = 3 to recover the results of the previous subsection.

First off, note that n—simplex is an example of an n—polytope. It has (Zﬁ) k—faces which
are themselves k—simplicies (for any k). These k—faces are enumerated by (k + 1)—element
subsets I C [n], hence the binomial coefficient. It is obviously simplicial and self-dual. It’s a
generalization of a tetrahedron.

Next, define the n—cube as C,, = {z; € [-1,1],i = 1,...,n} C R™ It is an n—polytope
on 2" verticies, that have coordinates (£1,...,£1). It has 2n faces, which are (n — 1)—cubes
inside affine hyperplanes {x; = +1},7 = 1,...,n. More generally, it has (Z) 2n—F k—faces, which
are k—cubes. To see this, argue as follows. First, one has to choose a linear subspace that is
parallel to the affine one containg a k—face. There are (}) = (,",) ways to do this, i.e. subsets
I C {1,...,n}; a linear subspace is then given by (n — k) equations {x;c; = 0}. Second, to
get the affine subspace, one has to fill each of the chosen n — k coordinates with 1 or —1. This
introduces a factor of 2"*.

The dual of the n—cube is called n-octahedron'. It has 2n verticies (that geometrically can
be thought of as the middles of the corresponding faces of n—cube). More generally, k—faces
of the dual polytope correspond to (n — k — 1)—faces of the initial one. So, n—octahedron has
(n_2_1)2"_(”_"’_1) = (kil) 2k+1 L —faces. These k—faces are k—simplicies. To see this, note that
any (n+ 1) (n — 1)—faces of the n—cube don’t intersect. One of the exercises provides explicit
construction of the corresponding simplicial complex.

To summarize, we have three series of n—polytopes: n—simplex, n—cube and n—octahedron.
The first one is self-dual, the other two are dual to each other. The boundaries of n—simplex
and n—octahedron are pure (n — 1)—dimensional simplicial complexes and provide simplical
models for S"~!. Icosahedron and dodecahedron don’t have similar generalizations; they are

exceptional Platonic solids.
Simplicial maps. (To be filled.)

Operations on simplicial complexes. One can construct new simplicial complexes out of
old. In what follows we denote the vertex set of a simplicial complex K by V(K) (this is what
used to be M before).

Definition 1.18. For two simplicial complexes K and L their disjoint union K U L is defined
as follows: the vertex set is V(K) U V(L), the set of simplicies is K U L.

Geometrically this corresponds to placing two complexes side by side.
Example 1.19. K = A9y, L = Ay, KU L= {{1},{2},{1,2}, {3}, {4}, {3.4}}.

Definition 1.20. For two simplicial complexes K and L their join K x L is defined as follows:
the vertex set is V(K )UV (L), the set of simplicies is comprised of subsets /LI.J C V(K)UV (L),
for all possible choices of I € K and J € L.

Geometrically, this corresponds to considering the union of all the segments starting at K and
ending at L, provided that K and L are embedded in R" is such a way that the afore-mentioned
segments don’t intersect each other (except at the endpoints).

Example 1.21. K = A, = Ag, ny, L = Ay = Appqa,. nimt1y- Note that every subset I C
{0,...,n+m+1} is a disjoint union of some I; C {0,...,n} and some I, C {n+1,..., n+m+1}.
We conclude that A, « A, = Apimaa-

H)More conventional terms are hyperoctahedron and cross-polytope.
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Example 1.22. As an example of an example, take n = m = 1. We get that solid tetrahedron
is a join of two of its opposite edges. (The whole picture can be drawn in R?.)

Definition 1.23. For a simplicial complex K its cone C'K is defined as K x pt; its suspension
YK is defined as K * S%12,

Geometrically, cone is formed by taking a point above K and considering all the segments
that start at this point and end at K. Suspension is the union of two cones. Note the canonical
embeddings K — CK — XK.

Posets.

Definition 1.24. A partial order on a set X is a relation < which is
(1) reflexive, i.e. z < x,
(2) antisymmetric, i.e. if x < y and y < x, then z =y,
(3) transitive, i.e. if a < b and b < ¢, then a < c.

A set with a chosen partial order is called a poset and denoted by (X, ).

Example 1.25. If S is a set, then the power set 27 is a poset under inclusion: <=C.

Example 1.26. Natural numbers is a poset under divisibility: a < b < b : a.

Example 1.27. Let K be a simplicial complex. The set of all its simplicies is a poset under
inclusion. It’s called a face poset of K'* (notation: P(K)).

Example 1.28. If K has {1,2,3} and {2,4} as maximal simplicies, then P(K’) has 9 elements,
arranged into 3 “layers” of size 4, 4 and 1 according to the dimension of the correspoindng
simplex. (Pic.)

Definition 1.29. Let (X, <) be a poset. A chain in X is a sequence r; < --- < z,'* with
x; € X. The number k is then called a length of a chain. A chain is called mazimal if it can’t
be extended to a longer one.

Definition 1.30. Let (X, <) be a poset. Simplicial complex A(X), called order complex, is
defined as follows: (1) V(A(X)) = X, (2) simplicies of A(X) are chains in X.

Remark 1.31. Note that the verticies of each simplex in A(X) are naturally linearly ordered.
Simplicial complex structure on A(X), however, doesn’t keep track of this linear order.

Example 1.32. Applying P(-) to Example 1.26 (for the first 8 numbers) gives a simplicial
complex with maximal simplicies {1,5},{1,7},{1,2,6},{1, 3,6}, {1,2,4,8}. (Pic.)

We now have:
P()
Simplicial complexes : Posets
A()
Definition 1.33. For a simplicial complex K, the complex sd K := A(P(K)) is called a (first)

barycentric subdivision of K.

P2Note that SO = pt LI pt.

BBThe words ’simplex’ and "face’ are sometimes used interchangebly. At other times, the former is an example
of the latter.

143:1 < xg means that 1 < z9 and 7 # xs.
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Fact B 1.34. K =2sd K.

To see this, note, first, that it is enough to prove the statement for a simplex, since barycentric subdivision of K
is effectively that of all its simplicies. This is done by induction on dimension. The step of this induction relies on
barycentric coordinates.

This fact is meant to encourage to think of posets and simplicial complexes as of two incar-
nations of the same entity.

Example 1.35. The case K = A, is a dissection of a triangle into 6 smaller ones by three
(say) medians. (Pic.)

Iterating barycentric subdivision sufficiently many times makes simplicies arbitrarily small.
More formally, recall from “Topological digression” subsection that one can speak of a distance between two points

in K. The diameter of a simplex is defined as maximal distance between any two of its points. The statement is now

n

that the diameter of any simplex in sd K is at most — i}

times the diameter of the biggest simplex in K (here n is the

!
maximal dimension of all the simplicies). Since (#) Lo, 0, the initial statement follows (here [ is the number of

iterations of subdivision).

Example 1.36. Take any simplicial model of an n—sphere (boundary of a simplex or hyperoc-
tahedron). Subdivide sufficiently many times so as to find k top simplicies that don’t intersect.
(Say, for the boundary of a simplex, without doing any subdivision, one can only find one
such simplex, since any two intersect.) Remove them from simplicial complex. The result is a
simplicial model for an n—sphere with k holes.

2. CONVEX GEOMETRY

Recall that the notions of linear subspace, combination, hull and dependence all have affine
analogs.

Definition 2.1. An affine subspace of R™ is a subset L + v, where L is a linear subspace and
v € R™. An affine combination of points xy, ..., xy is Zle a;z;, .. ) o = 1. An affine hull
of a subset X C R" is {Zle az; | ke N z; € X, ), o = 1}. Finally, points x1,..., 25 are
called affinely dependent if ). a;x; = 0 for some o; € R s.t. Y, o; = 0 and at least one of the
«;’s 1s non-zero.

Remark 2.2. Given k points z1, ...,z one consider (k — 1) vectors x1 — xy, ..., Tx_1 — Tk.
Under this operation, affine notions correspond precisely to linear ones. For example, 1, ...,z
are affinely dependent if and only if 21 — xy, ..., x,_1 — z are linearly dependent (check this).

This explains the choice of conditions in the above definitions.

Example 2.3. An example of an affine subspace is an affine hyperplane, defined as L + v

for L C R™ of codimension 1** and some v € R". It is given by equation (a,z) = b, where
a€R" beR.

Definition 2.4. A subset C' C R" is called convez if tx + (1 — t)y € C for any x,y € C and
t € [0,1]. A conver combination of points xy, ...,y is Z,’f:l a;z;, st > a; =1 and a; > 0.
An convez hull conv X of a subset X € R™ is {S°F oy |k €N, z; € X, Y a5 = 1, oy > 0}.
Finally, points x1,..., 2y are called conver dependent if ). c;x; = 0 for some a; € R s.t.

Y. =0, a; >0 and at least one of the ;s is non-zero.
It is straightforward to check that convex hull of any set is a convex subset.

Example 2.5. If X C R" is finite then conv X is called a convex polytope. Its wvertices are
points of X that are in the boundary of conv X.

5That is to say, dim L = n — 1.
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Example 2.6. Given a € R" and b € R one can consider a closed half-space, defined as a set
ruled out by the inequality (a,x) > b. It is convex.

Recall that a subset X € R" is called compact if it is closed (i.e. contains all its limit points)
and bounded (i.e. contained in some n—ball).

Theorem 2.7. (Separation theorem.) Let C,D C R™ be two compact convex subsets s.t.
C'ND = @. Then there is an affine hyperplane H C R" that separates C' and D.

Proof. Consider the product C'x D C R" x R® = R?" and equip it with a function f: C'x D —
R defined as f(z,y) = ||z — y||. Since C' x D is compact it attains its minimum, say, on
(p,q) € C x D. Define H as a hyperplane perpendicular to the segment pg and containing the
midpoint ’%. Its equation is (p — ¢, x) = (p — g, ’%> (check this). Note that H N C = & since
otherwise the segment pr (where r € HNC') would contain a point closer to ¢ than p. Similarly
H N D = g@. Since p and q are separated by H, we're done. O

Remark 2.8. Note that convex geometry by itself is unaware of distances — this is the territory
of metric geometry. The interplay between the two is tight, however, as demonstrated by the
above proof.

Theorem 2.9. (Radon’s theorem.) Let py, ..., p,12 be points in R™. Then there exist subsets
]1, ]2 C {1, .o, + 2} s.t. ]1 N [2 = @ and COIlV(pi)ieh N COIlV(pi)Z'G[2 7& .

Proof. Given points are neccesarily affinely dependent, i.e. E?:f a;p; for some a; s.t.

S a; = 0. We claim the sets I, == {i | a; > 0}, I == {i | oy < 0} are the desired ones. To
this aim, we will construct explicitly = € conv(p;)ier, N conv(p;)icr,. Define z = %Zz‘eh a;p;,
where S =Y., a;. Since a;/S > 0and £ >_,.; «; = 1, the combination is (tailor-made to be)
convex and x € conv(p;)icr,. Next, since Y, ; a;+ > ;@i = 0, we have v = —% > icr, QiDi
and thus z € conv(p;);er,. We're done.

Theorem 2.10. (Helly’s theorem.) Let C,...,Cy C R™ be a collection convex subsets, k >
n + 1. Suppose any n + 1 of them intersect. Then all of them intersect.

Proof. We use induction on k. (Note that the case k = n + 1 is trivial.)

Base (k = n + 2). By assumption, one can find a point z; € N;.,;C; for any j. Apply Radon’s
theorem to these n + 2 points to get subsets Ji,Jo C {1,...,n+ 2} st. J;NJy =@ and a
point x € conv(x;) e, Nconv(z;)jes,. We claim that z € N/ 2C;. Indeed, fix any iy from 0 to
n + 2. Suppose that iy ¢ J; (the other alternative, iy & Jo, is treated similarly). By definition
of x;’s we have that z; € C;, for any j € J;. By convexity of C;,, conv(z;);es, C Cj,. Finally,
x € conv(z;)jes, C Cy, (for any ig ¢ J;). We're done.

Induction step. Consider new collection of subsets (C; N Cy); for all i = 1,...,k — 1. Take
any (n + 1)—element subcollection. It gives rise to (n + 2)—element subcollection of (C;);
(by adding C}). By assumption, any (n + 1) sets from this subcollection intersect. By the
induction base, all elements in this subcollection intersect. Therefore, the same holds for the
initial subcollection of (C; N Cy);. Now induction hypothesis implies that M=} (C; N Cy) # 2.
Therefore, N}_,C; # @. O

Remark 2.11. Note how induction step uses the base, which is indeed unusual. In fact, the
argument can be rephrased as induction with the (trivial) base &k = n + 1 which is free of this
quirk. (Radon’s theorem is used in the step in this case.) The chosen approach is meant to
highlight 1) the core case k = n+2; 2) the set-theoretical trick to deduce the general statement
from this core case.

Definition 2.12. Let X C R" be a k—point set. Then a point z € R” is called a centerpoint
is each closed half-space containing = contains at least niﬂ point of X.
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Example 2.13. In the case n = 1, centerpoint boils down to what is called the median of
values z1,...,z, € R. It provides an alternative way to “average out” the given set of values.
Unlike the mean value, it is doesn’t have a disadvantage that a single non-representative point
that is far away from the rest shifts the mean value.

Remark 2.14. An alternative definition of a centerpoint is provided by the fact that = is

a centerpoint if and only if = belongs to any open half-space v s.t. | X N~y > k. In
the = direction, suppose not, i.e. there is v s.t. [X N[ < 25k, then ¢ R™ \ v while

|(R*\7) N X| > =5k, a contradiction. The other direction is similar.
Theorem 2.15. (Centerpoint theorem.) For any finite set X C R™ centerpoint always exists.

Proof. Use the alternative definition. Let v run through all the open half-spaces s.t. [ X N~| >
—25k. The aim is to prove that all of them intersect. To overcome the obstacle that there
are infititely many of them, replace each v with v M conv X. This gives finitely many distinct
compact convex subsets with the same property, while the task is still to prove that all of them
intersect; let C be this finite collection.

Every element in C intersects with X along at least 25k points. Applying the inclusion-
exclusion formula |ANB| = |A|+|B|—|AUB] to the collection of all intersections of members of C
with X implies that intersecting with any element from this collection decreases the cardinality
by at most %ﬂk Therefore, the intersection of any d 4+ 1 members of C has cardinality strictly
greater than 0. The proof is concluded by the Helly’s theorem. U

Remark 2.16. The centerpoint theorem can be considered as an application of Helly’s theorem
since it doesn’t mention any convex sets in its formulation.

Theorem 2.17. (Caratheodory’s theorem.) (To be filled.)
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