Albert-Ludwigs-Universität Freiburg Institut für Mathematik Abteilung für Reine Mathematik

PD Dr. K. Halupczok Dipl.–Math. S. Feiler Nachklausur zur Vorlesung

Elementare Zahlentheorie

Sommersemester 2009

Musterlösung

10. September 2009 — 5 Seiten

Nachklausuraufgabe 1

Bestimmen Sie zwei modulo 210 inkongruente Lösungen des folgenden Kongruenzensystems:

$$2x \equiv 3 \mod 5$$
 $4x \equiv 2 \mod 6$ $3x \equiv 2 \mod 7$

Lösung:

Für alle $x \in \mathbb{Z}$ mit $4x \equiv 2 \mod 6$ gibt es ein $y \in \mathbb{Z}$ mit 4x = 2 + 6y.

Für alle $x \in \mathbb{Z}$ mit $4x \equiv 2 \mod 6$ ist also $2x \equiv 1 \mod 3$.

Wegen (2,3)=(2,5)=(3,7)=1, $2\cdot 2\equiv 1 \mod 3$, $3\cdot 2\equiv 1 \mod 5$ und $5\cdot 3\equiv 1 \mod 7$ ist das Kongruenzensystem

$$2x \equiv 1 \mod 3$$
 $2x \equiv 3 \mod 5$ $3x \equiv 2 \mod 7$

äquivalent zu dem Kongruenzensystem

$$x \equiv 2 \mod 3$$
 $x \equiv 9 \mod 5$ $x \equiv 10 \mod 7$.

Gesucht werden also alle $x \in \mathbb{Z}$ mit

$$x \equiv -1 \mod 3$$
, $x \equiv -1 \mod 5$ and $x \equiv 3 \mod 7$.

Definiert man

$$m_1 := 3, \qquad m_2 := 5, \qquad m_3 := 7,$$

 $M_1 := m_2 \cdot m_3 = 5 \cdot 7 = 35, \quad M_2 := m_3 \cdot m_1 = 7 \cdot 3 = 21 \quad \text{und} \quad M_3 := m_1 \cdot m_2 = 3 \cdot 5 = 15,$ so gilt für alle $(M_1^*, M_2^*, M_3^*)^T \in \mathbb{Z}^3$

$$\begin{aligned} M_1 \cdot M_1^* &\equiv 1 \bmod m_1 \iff 35M_1^* \equiv 1 \bmod 3 \iff -M_1^* \equiv 1 \bmod 3 \iff M_1^* \equiv -1 \bmod 3 \\ M_2 \cdot M_2^* &\equiv 1 \bmod m_2 \iff 21M_2^* \equiv 1 \bmod 5 \iff 1 \cdot M_2^* \equiv 1 \bmod 5 \iff M_2^* \equiv 1 \bmod 5 \\ M_3 \cdot M_3^* &\equiv 1 \bmod m_3 \iff 15M_3^* \equiv 1 \bmod 7 \iff 1 \cdot M_3^* \equiv 1 \bmod 7 \iff M_3^* \equiv 1 \bmod 7 \end{aligned}$$

Mit dem Chinesischen Restsatz folgt

$$x \equiv -1 \mod 3, \qquad x \equiv -1 \mod 5 \qquad \text{und} \qquad x \equiv 3 \mod 7$$

$$\iff x \equiv ((-1) \cdot (-1) \cdot 35 + 1 \cdot (-1) \cdot 21 + 1 \cdot 3 \cdot 15) \mod 3 \cdot 5 \cdot 7$$

$$\iff x \equiv (35 - 21 + 45) \mod 15 \cdot 7$$

$$\iff x \equiv 59 \mod 105.$$

Es gilt

$$2 \cdot 59 = 118 \equiv 3 \mod 5,$$
 $2 \cdot 164 = 328 \equiv 3 \mod 5,$ $4 \cdot 59 = 236 \equiv 2 \mod 6,$ $4 \cdot 164 = 656 \equiv 2 \mod 6,$ $3 \cdot 59 = 177 \equiv 2 \mod 7$ und $3 \cdot 164 = 492 \equiv 2 \mod 7.$

Mit $59 \not\equiv 164 \mod 210$ sind also in 59 und 164 zwei modulo 210 inkongruente Lösungen des Kongruenzensystems $2x \equiv 3 \mod 5$ $4x \equiv 2 \mod 6$ $3x \equiv 2 \mod 7$ gefunden.

Nachklausuraufgabe 2

Zeigen Sie, dass $\tau(n)$ genau dann ungerade ist, wenn $n \in \mathbb{N}$ eine Quadratzahl ist.

Lösung:

1. Möglichkeit

Sei
$$n \in \mathbb{N}$$
. Sei $g : \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{Q} \\ d \mapsto g_d := \frac{n}{d} \end{array} \right\}$. Für alle $d \in \mathbb{N}$ gilt
$$\left(d < \sqrt{n} \iff \frac{n}{d} = g_d > \sqrt{n} \right) \quad \text{und} \quad \left(d > \sqrt{n} \iff \frac{n}{d} = g_d < \sqrt{n} \right).$$

Für alle $d \in \mathbb{N}$ und alle $k \in \mathbb{N}$ gilt

$$g_d = g_k \qquad \iff \qquad \frac{n}{d} = \frac{n}{k} \qquad \iff \qquad d = k.$$

Damit ist g injektiv. Für alle $d \in \mathbb{N}$ gilt $d|n \iff g_d|n$ wegen $n = d \cdot \frac{n}{d} = d \cdot g_d$. Wegen $\# \{d \in \mathbb{N} ; d|n\} \le n < \infty$ ist g also bijektiv auf $\{d \in \mathbb{N} ; d|n\}$. Nun ist

$$\begin{split} \tau\left(n\right) &= \# \left\{ d \in \mathbb{N} \; ; d | n \right\} = \quad \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d < \sqrt{n} \right\} + \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d = \sqrt{n} \right\} \\ &= \quad \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d < \sqrt{n} \right\} + \# \left\{ d \in \mathbb{N} \; ; g_d | n \text{ und } g_d < \sqrt{n} \right\} \\ &+ \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d = \sqrt{n} \right\} \\ &= \quad \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d < \sqrt{n} \right\} + \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d < \sqrt{n} \right\} \\ &+ \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d < \sqrt{n} \right\} + \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d < \sqrt{n} \right\} \\ &= 2 \cdot \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d < \sqrt{n} \right\} + \# \left\{ d \in \mathbb{N} \; ; d | n \text{ und } d = \sqrt{n} \right\}. \end{split}$$

Wegen $\{d \in \mathbb{N} ; d | n \text{ und } d = \sqrt{n}\} \subseteq \{\sqrt{n}\}$ ist also $\tau(n)$ genau dann ungerade, wenn $\#\{d \in \mathbb{N} ; d | n \text{ und } d = \sqrt{n}\} = 1 \text{ ist.}$

Das ist genau dann der Fall, wenn $\{d \in \mathbb{N} : d | n \text{ und } d = \sqrt{n}\} = \{\sqrt{n}\}$ ist, also genau dann, wenn $\sqrt{n} \in \mathbb{N}$ ist. Das ist genau dann der Fall, wenn n eine Quadratzahl ist.

2. Möglichkeit

 τ ist nach Folgerung 5.3 multiplikativ.

Für alle
$$p \in \mathbb{P}$$
 und alle $a \in \mathbb{N}_0$ gilt $\tau(p^a) = \sum_{d|p^a} 1 = \sum_{b=0}^a 1 = a+1$ wegen $\{d \in \mathbb{N}; d|p^a\} = \{p^b \in \mathbb{N}; b \in \mathbb{N}_0 \text{ und } b \leq a\}$ nach Bemerkung 1.18.

Sei $n \in \mathbb{N}$ mit der Primfaktorzerlegung $n = \prod_{j=1}^{n} p_j^{a_j}$.

Dann gilt
$$\tau(n) = \tau\left(\prod_{j=1}^{r} p_j^{a_j}\right) = \prod_{j=1}^{r} \tau\left(p_j^{a_j}\right) = \prod_{j=1}^{r} (a_j + 1).$$

Also ist $\tau(n)$ genau dann ungerade, wenn $(a_j + 1)$ für alle $j \in \mathbb{N}$ mit $j \leq r$ ungerade ist. Das ist genau dann der Fall, wenn a_j für alle $j \in \mathbb{N}$ mit $j \leq r$ gerade ist, also wenn für alle $j \in \mathbb{N}$ mit $j \leq r$ ein b_j mit $a_j = 2b_j$ existert.

Damit ist
$$\tau(n)$$
 genau dann ungerade, wenn $n = \prod_{j=1}^r p_j^{a_j} = \prod_{j=1}^r p_j^{2b_j} = \left(\prod_{j=1}^r p_j^{b_j}\right)^2$ ist, also wenn n eine Quadratzahl ist.

3. Möglichkeit

Sei $n \in \mathbb{N}$ mit der Primfaktorzerlegung $n = \prod_{j=1}^{r} p_j^{a_j}$.

Nach Bemerkung 1.18 ist d|n äquivalent zu $d = \prod_{j=1}^r p_j^{d_j}$ mit $d_j \in \mathbb{N}_0$ und $d_j \leq a_j$ für alle $j \in \mathbb{N}$

Für jedes $j \in \mathbb{N}$ mit $j \leq r$ stehen $(a_j + 1)$ solcher $d_j \in \mathbb{N}_0$ mit $d_j \leq a_j$ zur Verfügung. Da diese beliebig miteinander kombiniert werden können, folgt $\tau(n) = \prod_{j=1}^r (a_j + 1)$.

Also ist $\tau(n)$ genau dann ungerade, wenn $(a_j + 1)$ für alle $j \in \mathbb{N}$ mit $j \leq r$ ungerade ist. Das ist genau dann der Fall, wenn a_j für alle $j \in \mathbb{N}$ mit $j \leq r$ gerade ist, also wenn für alle $j \in \mathbb{N}$ mit $j \leq r$ ein b_j mit $a_j = 2b_j$ existert.

Damit ist $\tau(n)$ genau dann ungerade, wenn $n = \prod_{j=1}^r p_j^{a_j} = \prod_{j=1}^r p_j^{2b_j} = \left(\prod_{j=1}^r p_j^{b_j}\right)^2$ ist, also wenn n eine Quadratzahl ist.

Nachklausuraufgabe 3

Bestimmen Sie alle Lösungen der Kongruenz $16x^2 - 2x - 10 \equiv 0 \mod 245$.

Lösung:

Es ist $245 = 5 \cdot 49 = 5 \cdot 7^2$ die Primfaktorzerlegung von 245.

Für alle $x \in \mathbb{Z}$ ist $16x^2 - 2x - 10 \equiv 0 \mod 5$ genau dann, wenn $x^2 - 2x \equiv 0 \mod 5$ ist.

Wegen $0^2 - 2 \cdot 0 = 0$, $2^2 - 2 \cdot 2 = 0$ und des Satzes von LAGRANGE 3.5 ist also für alle $x \in \mathbb{Z}$

$$16x^2 - 2x - 10 \equiv 0 \bmod 5 \qquad \iff \qquad x \in (0 + 5\mathbb{Z}) \cup (2 + 5\mathbb{Z}).$$

Für alle $x \in \mathbb{Z}$ ist $16x^2 - 2x - 10 \equiv 2 \cdot x^2 - 2x - 3 \mod 7$. Es gilt

$$2 \cdot (-3)^2 - 2 \cdot (-3) - 3 = 18 + 6 - 3 = 21 \equiv 0 \mod 7,$$

$$2 \cdot (-2)^2 - 2 \cdot (-2) - 3 = 8 + 4 - 3 = 11 \not\equiv 0 \mod 7,$$

$$2 \cdot (-1)^2 - 2 \cdot (-1) - 3 = 2 + 2 - 3 = 1 \not\equiv 0 \mod 7,$$

$$2 \cdot 0^2 - 2 \cdot 0 - 3 = 0 - 0 - 3 = -3 \not\equiv 0 \mod 7,$$

$$2 \cdot 1^2 - 2 \cdot 1 - 3 = 2 - 2 - 3 = -3 \not\equiv 0 \mod 7,$$

$$2 \cdot 2^2 - 2 \cdot 2 - 3 = 8 - 4 - 3 = 1 \not\equiv 0 \mod 7$$

und

$$2 \cdot 3^2 - 2 \cdot 3 - 3 = 18 - 6 - 3 = 9 \not\equiv 0 \bmod 7.$$

Für alle $x \in \mathbb{Z}$ gilt also

$$16x^2 - 2x - 10 \equiv 0 \bmod 7 \qquad \iff \qquad x \equiv -3 \bmod 7.$$

Es gelten $32 \cdot (-3) - 2 = -96 - 2 = -98 = (-14) \cdot 7 \equiv 0 \mod 7$ und

$$16 \cdot (-3)^2 - 2 \cdot (-3) - 10 = 48 \cdot 3 + 6 - 10 \equiv (-1) \cdot 3 - 4 \mod 49 \equiv -7 \mod 49 \not\equiv 0 \mod 49$$

Mit dem Aufsteigesatz 3.7 folgt, dass es kein $x \in \mathbb{Z}$ mit $16x^2 - 2x - 10 \equiv 0$ mod 49 gibt. Damit ergibt sich

$$\left\{x \in \mathbb{Z}; 16x^2 - 2x - 10 \equiv 0 \bmod 245\right\} = \emptyset.$$

Nachklausuraufgabe 4

Seien $p \in \mathbb{P} \setminus \{2\}$ und $a \in \mathbb{Z}$ mit (a, p) = 1 und $\operatorname{ord}_p(a) = 3$. Zeigen Sie $\left(\frac{a}{p}\right) = 1$.

Hinweis: Es gilt $a^3 - 1 = (a - 1) \cdot (a^2 + a + 1)$. Betrachten Sie den Rest von $(a + 1)^2 \mod p$.

Lösung:

Wegen $\operatorname{ord}_p(a) = 3$ ist $a^3 - 1 \equiv 1 - 1 \mod p$ und deshalb wird $a^3 - 1$ von p geteilt. Nun ist (man lese von rechts nach links)

$$a^{3} - 1 = (a^{3} + a^{2} + a) - (a^{2} + a + 1) = (a - 1) \cdot (a^{2} + a + 1).$$

Wegen $p \in \mathbb{P}$ gilt also p|(a-1) oder $p|(a^2+a+1)$.

Die Annahme p|(a-1) führt zu $a=a-1+1\equiv 1 \mod p$ im Widerspruch zu $\operatorname{ord}_p(a)=3$. Also teilt p die Zahl (a^2+a+1) und es folgt

$$a \equiv a + (a^2 + a + 1) \mod p \equiv a^2 + 2a + 1 \mod p \equiv (a+1)^2 \mod p$$
.

Insbesondere ist a ein quadratischer Rest modulo p und es gilt also $\left(\frac{a}{p}\right) = 1$.

Nachklausuraufgabe 5

Seien $k \in \mathbb{N} \setminus \{\overline{1}\}$, $a := 2^k + 1$, $m \in \mathbb{N}$ und $n \in \mathbb{N}$ mit (n, m) = 1, $n \equiv 1 \mod 2$ und $m \equiv a \mod (4n)$. Zeigen Sie $\left(\frac{n}{m}\right) = \left(\frac{a}{n}\right)$.

Lösung:

Es gilt $m \equiv a \mod n$ und es gilt

$$m \equiv a \mod 4 \equiv 2^k + 1 \mod 4 \equiv 4 \cdot 2^{k-2} + 1 \mod 4 \equiv 1 \mod 4.$$

Also gibt es ein $\ell \in \mathbb{N}$ mit $m = 1 + 4\ell$. Außerdem gibt es ein $k \in \mathbb{N}$ mit n = 1 + 2k. Mit der Rechenregel zum JACOBI-Symbol 3.17 (7) folgt

$$\left(\frac{n}{m}\right) = \left(\frac{m}{n}\right) \cdot (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}} = \left(\frac{m}{n}\right) \cdot (-1)^{2\ell k} = \left(\frac{m}{n}\right).$$

Mit der Rechenregel zum JACOBI-Symbol 3.17 (1) folgt

$$\left(\frac{n}{m}\right) = \left(\frac{m}{n}\right) = \left(\frac{a}{n}\right).$$

Nachklausuraufgabe 6

Seien $f: \mathbb{N} \to \mathbb{C}$ und $g: \mathbb{N} \to \mathbb{C}$ zwei zahlentheoretische Funktionen. Beweisen Sie die Identität $\ln \cdot (f * g) = (\ln \cdot f) * g + f * (\ln \cdot g)$.

Lösung:

Für alle $n \in \mathbb{N}$ gilt

$$((\ln \cdot f) * g + f * (\ln \cdot g)) (n) = \sum_{d|n} (\ln \cdot f) (d) \cdot g \left(\frac{n}{d}\right) + \sum_{d|n} f (d) \cdot (\ln \cdot g) \left(\frac{n}{d}\right)$$

$$= \sum_{d|n} \ln (d) \cdot f (d) \cdot g \left(\frac{n}{d}\right) + \sum_{d|n} f (d) \cdot \ln \left(\frac{n}{d}\right) \cdot g \left(\frac{n}{d}\right)$$

$$= \sum_{d|n} f (d) \cdot g \left(\frac{n}{d}\right) \cdot \left(\ln (d) + \ln \left(\frac{n}{d}\right)\right)$$

$$= \sum_{d|n} f (d) \cdot g \left(\frac{n}{d}\right) \cdot \ln \left(d \cdot \frac{n}{d}\right) = \ln (n) \cdot \sum_{d|n} f (d) \cdot g \left(\frac{n}{d}\right) = (\ln \cdot (f * g)) (n).$$

Nachklausuraufgabe 7

Eine Zahl $n \in \mathbb{N}$ heißt mehrfach multiplikativ vollkommen, falls $\prod_{d \mid n} d$ eine Potenz von n dar-

stellt. Zeigen Sie, dass jede gerade vollkommene Zahl mehrfach multiplikativ vollkommen ist.

Lösung:

Sei $n \in \mathbb{N}$ mit 2|n vollkommen.

Nach Satz 5.5 (1) gibt es ein $k \in \mathbb{N}$ mit $p := 2^{k+1} - 1 \in \mathbb{P}$ und $n = 2^k p$. Also ist

$$\left\{d \in \mathbb{N} ; d|n\right\} = \left\{2^j \in \mathbb{N} ; j \in \mathbb{N}_0 \text{ mit } j \le k\right\} \cup \left\{2^j p \in \mathbb{N} ; j \in \mathbb{N}_0 \text{ mit } j \le k\right\}.$$

eine disjunkte Zerlegung der Menge der Teiler von n. Damit folgt

$$\prod_{d|n} d = \prod_{j=0}^{k} 2^{j} \cdot \prod_{j=0}^{k} \left(2^{j} p\right) = \prod_{j=0}^{k} \left(2^{2j} \cdot p\right) = p^{k+1} \cdot \left(2^{2}\right)^{\sum_{j=0}^{k} j} = p^{k+1} \cdot \left(2^{2}\right)^{\frac{k \cdot (k+1)}{2}} = \left(2^{k} p\right)^{k+1} = n^{k+1}.$$

Nachklausuraufgabe 8

Geben Sie alle $k \in \mathbb{N}$ mit $\varphi(k) = 44$ an.

Lösung:

Seien $n \in \mathbb{N}$ mit $\varphi(n) = 44$ und $n = \prod_{j=1}^{r} p_j^{a_j}$ die eindeutige Primfaktorzerlegung von n.

Dann ist $44 = 2^2 \cdot 11$ die eindeutige Primfaktorzerlegung von $\varphi(n) = \prod_{j=1}^{r} (p_j - 1) \cdot p_j^{a_j - 1}$.

Insbesondere folgt $(p_j - 1)$ |44 für alle $j \in \mathbb{N}$ mit $j \leq r$.

Damit folgt $p_i - 1 \in \{1, 2, 4, 11, 22, 44\}$ für alle $j \in \mathbb{N}$ mit $j \leq r$.

Also kommen nur Primfaktoren aus der Menge $\mathbb{P} \cap \{2, 3, 5, 12, 23, 45\} = \{2, 3, 5, 23\}$ in Betracht $(12 = 3 \cdot 4 \quad \text{und} \quad 45 = 5 \cdot 9)$.

Es gibt also ein $(a, b, c, d)^T \in \mathbb{N}_0^4$ mit $n = 2^a \cdot 3^b \cdot 5^c \cdot 23^d$.

Annahme: $d \ge 2$

Dann wird $\varphi(n)$ von $22 \cdot 23^{d-1}$ geteilt.

Das ist ein Widerspruch zu $\varphi(n) = 44 < 22 \cdot 23 = 506 \le 22 \cdot 23^{d-1}$.

Annahme: d = 0

Dann gilt $p_j \leq 5$ für alle $j \in \mathbb{N}$ mit $j \leq r$. Insbesondere wäre $p \leq 5$ für alle $p \in \mathbb{P}$ mit $p | \varphi(n)$ mit Widerspruch zu $11 \in \mathbb{P}$ und $11 | \varphi(n)$.

Also gilt d = 1 und damit $44 = \varphi(n) = \varphi(2^a \cdot 3^b \cdot 5^c) \cdot \varphi(23) = \varphi(2^a \cdot 3^b \cdot 5^c) \cdot 22$.

Das führt zu $2 = \varphi \left(2^a \cdot 3^b \cdot 5^c \right)$.

Annahme: $c \neq 0$

Dann wäre $2 = \varphi\left(2^a \cdot 3^b \cdot 5^c\right) = \varphi\left(2^a \cdot 3^b\right) \cdot \varphi\left(5^c\right) = \varphi\left(2^a \cdot 3^b\right) \cdot 4 \cdot 5^{c-1}$.

Das ergibt den Widerspruch 4|2.

Also ist c = 0.

Annahme: $b \ge 2$

Dann wäre $2 = \varphi(2^a \cdot 3^b) = \varphi(2^a) \cdot 2 \cdot 3^{b-1}$. Das ergibt den Widerspruch 3|2.

Fall 1: b = 1

Dann ist $2 = \varphi(2^a) \cdot \varphi(3) = \varphi(2^a) \cdot 2$ und es folgt $\varphi(2^a) = 1$.

Es sind $\varphi(2^0) = 1 = \varphi(2^1)$. Für alle $\tilde{a} \in \mathbb{N} \setminus \{1\}$ ist $\varphi(2^{\tilde{a}}) = 1 \cdot 2^{\tilde{a}-1} \ge 2 > 1 = \varphi(2^a)$.

Also ergeben sich die Fälle $(a, b, c, d)^T = (0, 1, 0, 1)^T$ und $(a, b, c, d)^T = (1, 1, 0, 1)^T$.

Fall 1: b = 0

Dann ist $2 = \varphi\left(2^{a}\right)$. Wegen $\varphi\left(2^{0}\right) = 1 \neq 2$ ist also $a \geq 1$.

Damit folgt $2 = \varphi(2^a) = 1 \cdot 2^{a-1} = 2^{a-1}$, was a = 2 zur Folge hat.

Damit ergibt sich also der Fall $(a, b, c, d)^T = (2, 0, 0, 1)^T$.

Also ist $(a, b, c, d)^T \in \{(0, 1, 0, 1)^T, (1, 1, 0, 1)^T, (2, 0, 0, 1)^T\}$. Dies ergibt

$$\{k \in \mathbb{N} : \varphi(k) = 44\} = \{3 \cdot 23, 2 \cdot 3 \cdot 23, 2^2 \cdot 23\} = \{69, 92, 138\}.$$