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The purpose of this note is to prove the following:

Theorem 1 Every bounded hyperimaginary is a class of a bounded type—defin-
able equivalence relation.

Let C be a big saturated model. An equivalence relation E between tuples
of elements of C is type—definable if it is defined by a set of formulas without
parameters. The tuples may be infinite, but their length should be smaller than
the size of C. E is bounded if it has few classes compared with the size of C.
Bounded type-definable equivalence relations on a type-definable subclass of C
are defined similarly.

A class of a type—definable equivalence relation is a hyperimaginary. A hy-
perimaginary is bounded if it has few conjugates under automorphisms of C. Of
course all classes of a bounded type—definable equivalence relation are bounded
hyperimaginaries. By the proposed theorem all bounded hyperimaginaries oc-
cur in this way.

Let KP denote the finest bounded type—definable equivalence relation!. We
will prove Theorem 1 in the following equivalent form:

Theorem 2 Let D a type—definable subclass of C. Then KP N (D x D) is the
finest bounded type—definable equivalence relation on D.

To see that this implies Theorem 1 consider a bounded hyperimaginary Fa. The
union D of all conjugates of Ea is type—definable and E N (D x D) is a bounded
type—definable equivalence relation on D. Since KP refines £ on D and since D
is a union of KP—classes

F=KPU(EN (D x D))

defines an equivalence relation, which is bounded, type—definable and satisfies
Fa = Fa.

LKP depends of course on the length of the tuples under consideration. To ease notation
we will assume all tuples to be of length 1.



Definition A reflexive and symmetric relation R on a set C' is thick if there
is no infinite R—anti-chain, i.e. an infinite set A C C' such that —=R(a,b) for all
different a,b € A.

The following lemma is well-known and easy to prove.

Lemma 3 Let E(xz,y) be the intersection of a set R of definable reflexive and
symmetric relations on C and D be the intersection of a set B of definable
subclasses of C. We assume R and P to be closed under finite intersections.

e E(x,y) is an equivalence relation iff for each R € R there is an S € R
such that S? C R.

o Assume E(x,y) is an equivalence relation. Then E(x,y) is bounded on D
iff each R € R is thick on some element P of B.

To prove Theorem 2 we fix a type—definable class D and a bounded type—
definable equivalence relation on D. Extending by equality on C\ D we see that
this relation has the form E N (DD x D) for a type—definable equivalence relation
E.

We write E as the intersection of a set R of definable reflexive and symmetric
relations and D as the intersection of definable classes from 3. We can assume
that both R an ‘B are closed under finite intersections. Fix a relation R € fA.
We will find a Py € B and a sequence Sp, S1, ... of definable symmetric and
reflexive relations with the following properties:

(1) S,Nn(PhxC)CR
(2) Si41 C Sh
(3) S2 is thick.

The intersection of the .S,, is then a bounded type—definable equivalence relation
which refines R on D. This shows KP N (D x D) C R and proves Theorem 2.

Lemma There is a P € B such that for all x € P there is a y € D such that
R(z,y).

Proof: Assume not. Then every P € ‘B contains an x which is not R-related
to any element of . By compactness there must be a subset P’ of P which
belongs to P and does not contain elements R-related to z. We start with a
set Py € B on which R is thick. Then we choose zg € Py and a subset Pj
without elements R-related to xy. In P; we choose x1 and P, etc. The x; form
an infinite R—antichain, which is impossible.

By the last two lemmas we can find two sequences Ry O R; D --- and
Py D P, D -+ of elements of R and P8 with the following properties:

(a) R3CR



(b) R\ C Ry

(¢) R; is thick on P;

(d) C=EVze P, 3y e Py Rigi(x,y)
Let « be an element of C. We define recursively

Xo(z) = {z€Py| Ro(z,2)}
Xiy1(z) = {z € Piy1| Rit1(y, 2) for some y € X;(z)}
and the relations S,, as
Sp(z,2") = X, (x) ~g, X,(2),

where ~p  is defined as follows:

Definition Let S be a reflezive and symmetric relation on a set C'. For subsets
of X, X' of C define

Xr~g X e—=VreX I eX S(x,2") N Vi'e X FzeX S(x,a).
~g 15 a reflexive and symmetric relation on the power set of C'.
Note that property (d) implies
Xi(x) ~riyy Xigr(2).
Lemma 4 Let S and S’ be reflexive and symmetric relations on C.
e ~gg/ is the composition of ~g and ~gr.
o If S is thick on C the relation ~g2 is thick on the power set of C.

Proof: The first claim is easy to see. Actually we will use only the trivial
inclusion ~g~g C ~gg/. For the second claim assume that S is thick. Choose
a maximal S—anti-chain A in C. Then every element of C' is S-related to an
element of A. It follows that for every subset X of C

X ~Ss XA)

where X4 = {a € A| S(z,a) for some x € X}. This implies that an ~g2—anti-
chain cannot have more elements than there are subsets of A.

Finally we show that the S,, have the properties (1)—(3).
(1) Assume S, (z,2’). Let T denote the composition R Ry -+ R,,. Then
Xo(x) ~r Xn(2) ~r, Xn(2') ~r Xo(a'),

which implies Xo(x) ~rg,r Xo(2’). By property (b) we have TR,, C Ry (we
use only R? | C R;), whence Xo(z) ~rz Xo(z'). Now assume that in addition



x € Py. Then z € Xo(x) and we find an y € Xo(z') such that R3(x,y). Since
Ro(2',y) we can conclude that R3(x,z’). Whence R(z,2’) by (a).
(2) If S2

n

We have

41(x,2") there is an element 2’ such that Sy, 41 (x,2’) and S,41 (2, 2").

Xn(z) ~Rpt1 Xng1(x) ~Ryt1 Xn+1(x,) ~Ryt1 Xn—&-l(xn) ~Ryt1 Xn(xll)-
This implies X, (x) ~g, X,(z") by property (b).

(3) By property (c) and the last lemma the relation ~gz is thick on the power
set of P,. This implies immediately the thickness of S,,.

Note added in June 2000

The theorem appeared already in Theorem 4.18 in Hyperimaginairies and auto-
morphism groups by D.Lascar and A.Pillay. The proof given there is, if one cir-
cumvents the surrounding theory, the following: Let A be the set of all bounded
hyperimaginaries a/FE. Define the equivalence relation LP by

LP < tp(z/A) = tp(y/A).

LP is bounded and type—definable. Whence it is refined by KP. Now let F
be a type—definable equivalence relation on . The classes of E are bounded
hyperimaginairies. Therefore elements of D which are LP—equivalent are also
FE equivalent. It follows that LP and therefore KP refines £ on D. In fact
LP = KP.

That LP is type—definable is a basic observation: Let a/FE be a hyperimagi-
nary. Then x and y have the same type over a/E iff

Ja’ E(a,d’) A tp(z,a) = tp(y,d’).
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