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Abstract

When analyzing database query languages a property of theories, the
pseudo-finite homogeneity property has been introduced and applied (cf.
[3]). We show that a stable theory has the pseudo-finite homogeneity
property just in case its expressive power for finite states is bounded.
Moreover, we introduce the corresponding pseudo-finite saturation prop-
erty and show that a theory fails to have the finite cover property iff it
has the pseudo-finite saturation property.

1 Pseudo-finite homogeneity

Throughout let T be a complete first-order theory in a countable language L
with infinite models. Suppose that ρ is a finite non-empty set of relation symbols
not contained in L. Set L(ρ) := L ∪ ρ. If M is a model of T , and (M, P̄ ) is
an L(ρ)-structure with, say, P̄ = P1 . . . Pr, then P̄ is a (ρ)-state in M . fld(P̄ ),
the field or active domain of the state P̄ , is the set fld(P1)∪ . . .∪ fld(Pr), where
fld(Pj) is the field of the relation Pj . P̄ is a finite state, if every fld(Pj) is finite
and non-empty. In the following we will denote finite states by s̄, s̄′ . . ..

A state P̄ in M is pseudo-finite, if (M, P̄ ) is a model of F (T, ρ), the theory
of all finite states, i.e.,

F (T, ρ) := Th({(N, s̄) | N |= T, (N, s̄) an L(ρ)-structure, s̄ a finite state}).

In general, we use r̄, r̄′, t̄ . . . to denote pseudo-finite states.

Example 1.1 For L := ∅, T the L-theory of infinite sets, and ρ := {P} with
unary P , a subset r of a model M of T is pseudo-finite iff M \ r is infinite.
In fact, for every k, the complement of every finite subset contains at least k
elements, hence the same holds for a pseudo-finite subset. If M \ r and r are
infinite and l ≥ 1, then (M, r) satisfies the same sentences of quantifier rank ≤ l
as (M, s), where |s| = l. Therefore, (M, r) |= F (T, ρ).

We collect some properties of pseudo-finite states:
∗e-mail address: {flum, ziegler}@uni-freiburg.de
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Proposition 1.2 (cf. [3])

a) For every L(ρ)-sentence ϕ there is a sequence (ϕn)n≥1 of L-sentences such
that

ϕ ∈ F (T, ρ) iff for all n ≥ 1, T |= ϕn.

b) Let r be a pseudo-finite subset of M (i.e., ρ = {P} with unary P ). If
s ⊆M is finite, then r∪ s is pseudo-finite. If s is definable (in particular,
finite) then r \ s is pseudo-finite.

c) If r̄ is pseudo-finite in M , then fld(r̄) is pseudo-finite in M .

d) If r̄ is a pseudo-finite ρ-state in M and ρ′ ⊆ ρ, then r̄|ρ′ is pseudo-finite.

Proof. a) For simplicty, let ρ := {P} with unary P . Fix an L(ρ)-sentence
ϕ. Now, let the L-sentence ϕn express that ϕ holds, if P has at most n ele-
ments, e.g., ϕn := ∀x1 . . . ∀xnϕ

∗, where ϕ∗ is obtained from ϕ by replacing each
subformula of the form Pu, u a term, by (u = x1 ∨ . . . ∨ u = xn).

The proofs of b) – d) make use of the corresponding facts for finite r and r̄,
respectively (see [3] for details). 2

The pseudo-finite homogeneity property H(T ) was introduced in [3]: For an
infinite cardinal λ denote by H(T, λ) the property

if r and t are pseudo-finite subsets of a model M of T , h : r → t is
bijective and L-elementary, and (M, r, t, h) is λ-saturated, then for
every a ∈M there is b ∈M such that h ∪ {(a, b)} is L-elementary.

H(T ) means that H(T, λ) holds for some λ. T has the pseudo-finite homogeneity
property, if H(T ) holds.

Proposition 1.3 • If µ ≤ λ then H(T, µ) implies H(T, λ).

• H(T, λ) implies H(T, ω). Hence, H(T ) is equivalent to H(T, ω).

Proof. The first assertion is clear. For the last one, suppose that (M, r, t, h) is
ω-saturated, r and t are pseudo-finite, and h : r → t is onto and elementary. Let
a ∈M . Choose a λ-saturated elementary extension (M ′, r′, t′, h′) of (M, r, t, h).
By H(T, λ), there is b′ ∈ M ′ such that h′ ∪ {(a, b′)} is elementary. Using ω-
saturation, choose b ∈M such that (M, r, t, h, a, b) ≡ (M ′, r′, t′, h′, a, b′). Then,
h ∪ {(a, b)} is elementary. 2

In [3] it is shown that H(T ) holds for o-minimal T (even for quasi-o-minimal T ).
There are theories T without H(T ) (variants of the following example will play
a role in the next section):

Example 1.4 Let T be the theory of an equivalence relation which, for every
n ≥ 1, has exactly one equivalence class of cardinality n. H(T ) does not hold:
Let λ be an infinite cardinal and M a λ-saturated model of cardinality λ. Let
A1 and A2 be two infinite equivalence classes and let a ∈ A1. Set r := A1 \ {a}
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and t := A2. Choose a bijection h : r → t. Then, r and t are pseudo-finite in
M , h is elementary and (M, r, t, h) is λ-saturated. But, there is no b ∈M such
that h ∪ {(a, b)} is elementary.

2 Some collapsing results

Let s̄ be a finite state in a model M of T . In the theory of constraint databases
the question has been addressed whether every L(ρ)-formula (“query”) is equiv-
alent in M for finite states to a formula whose quantifiers are restricted to fld(s̄).
Moreover, in case an order relation < is in L, one wants to know whether every
L(ρ)-formula preserved under partial order-isomorphisms is expressible in terms
of < and the symbols in ρ. We present some positive results (collapsing results)
and some negative ones. More or less explicitly, these results are contained in
[3], [4], [5], [6]. Moreover, for stable theories, we show that pseudo-finite homo-
geneity is equivalent to one of the collapsing properties.

L(ρ)-formulas ϕ(x̄) and ψ(x̄) are equivalent in T for finite states if for all mod-
els M of T , all finite states s̄ and all ā ∈ fld(s̄), (M, s̄) |= ϕ(ā) ↔ ψ(ā). Of
course, by completeness of T and finiteness of the states, it suffices to require
the condition just for one model M of T . By the same reasons, the following
fact, tacitly used in the next proofs, holds:

If, for i = 1, 2, Ni |= T , Ni |= ϕi(s̄i), where s̄i is a finite ρi-state and
ρ1 ∩ ρ2 = ∅, then in every model M of T there are finite states s̄′1
and s̄′2 such that M |= ϕ1(s̄′1) ∧ ϕ2(s̄′2).

An L(ρ)-formula is ρ-bounded, if it has the form

Q1x̄1 ∈ P1 . . . Qmx̄m ∈ Pmψ

where Q1, . . . , Qm ∈ {∀, ∃}, P1, . . . , Pm ∈ ρ, and ψ is an L-formula (and
x̄1, . . . , x̄m have the appropriate length). By our assumption that the rela-
tions in a finite state are non-empty, every Boolean combination of ρ-bounded
formulas is equivalent for finite states to a ρ-bounded formula.

The first collapsing theorem reads as follows (the idea of the proof was used in
[5] to show Corollary 2.2 below for o-minimal theories):

Theorem 2.1 If H(T ) holds then, for every ρ, every L(ρ)-formula is equivalent
in T for finite states to a ρ-bounded sentence.

Proof. For notational simplicity, let ϕ be an L(ρ)-sentence. If ϕ is not equiv-
alent to a ρ-bounded sentence, then by a standard compactness argument, one
obtains pseudo-finite r̄ and r̄′ in a model M of T such that M |= ϕ(r̄) ∧ ¬ϕ(r̄′)
and such that (M, r̄) and (M, r̄′) satisfy the same ρ-bounded sentences. An
appropriate back and forth argument (together with further applications of the
compactness theorem) shows that, in addition, we can assume that there is
a partial L(ρ)-isomorphism h with h : fld(r̄) → fld(r̄′), which is onto and L-
elementary, and that (M, fld(r̄), fld(r̄′), h) is ω-saturated. Now, for every l ≥ 1,
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the pseudo-finite homogeneity shows that h can be extended l times back and
forth to an L-elementary map, which by fld(r̄) ⊆ do(h) and fld(r̄′) ⊆ rg(h) is
a partial L(ρ)-isomorphism. Therefore, h is L(ρ)-elementary, which contradicts
M |= ϕ(r̄) ∧ ¬ϕ(r̄′). 2

An L(ρ)-sentence is ρ-restricted, if all quantifiers are relativized to fld(ρ). Clearly,
every ρ-restricted formula is equivalent to a ρ-bounded one, and if T admits
quantifier elimination, the converse holds, i.e., every ρ-bounded formula is equiv-
alent to a ρ-restricted one. Therefore:

Corollary 2.2 (cf. [5]) If T admits quantifier elimination and H(T ) holds then,
for every ρ, every L(ρ)-formula is equivalent in T for finite states to a ρ-
restricted formula.

For stable theories the converse of the preceding theorem holds (we do not know
whether the assumption of stability can be omitted):

Theorem 2.3 Assume T is stable. If, for every ρ, every L(ρ)-formula is equiv-
alent in T for finite states to a ρ-bounded formula, then H(T ) holds.

Proof. We show H(T, ω). So, let r and t be pseudo-finite subsets of a model
M of T , h : r → t onto and elementary, and (M, r, t, h) ω-saturated. Given
a ∈ M let p := tp(a/r) (tp(a/r) denotes the type of a in (M, (e)e∈r)). For an
L-formula ϕ(x, ȳ) set

pϕ := {ϕ(x, ā) | ā ∈ r, ϕ(x, ā) ∈ p} ∪ {¬ϕ(x, ā) | ā ∈ r, ¬ϕ(x, ā) ∈ p}.
By stability of T , the type pϕ is definable over r, i.e., there is an L-formula
δϕ(ȳ, z̄) and c̄ϕ ∈ r such that for all ā ∈ r,

M |= δϕ(ā, c̄ϕ) iff ϕ(x, ā) ∈ p.
For ρ = {P} with unary P and L-formulas ϕ1(x, ȳ), . . . , ϕm(x, ȳ), the formula

α(P, c̄ϕ1 , . . . , c̄ϕm) := ∃x
∧

1≤i≤m

∀ȳ ∈ P (δϕi(ȳ, c̄ϕi) ↔ ϕi(x, ȳ))

expresses in (M, r) that pϕ1 ∪ . . . ∪ pϕm is realized. By assumption, for finite,
and hence, for pseudo-finite P , α(P, c̄ϕ1 , . . . , c̄ϕm) is equivalent to a ρ-bounded
formula. But, M |= α(r, c̄ϕ1 , . . . , c̄ϕm) and h preserves ρ-bounded formulas,
therefore, M |= α(t, h(c̄ϕ1), . . . , h(c̄ϕm)). Thus, there is b0 ∈ M such that for
i = 1, . . . ,m and ā ∈ r,

M |= ϕi(a, ā) ↔ ϕi(b0, h(ā)).

Hence,

q(x) := {∀ȳ ∈ P (ϕ(a, ȳ) ↔ ϕ(x, h(ȳ))) | ϕ(x, ȳ) an L-formula}
is finitely satisfiable in (M, r, h, a). Therefore, by ω-saturation, there is b ∈ M
satisfying q(x). Then, h ∪ {(a, b)} is elementary. 2
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Example 2.4 (cf. [5]) Let T be the theory of the ordered field of real numbers.
T admits elimination of quantifiers and is o-minimal and therefore, H(T) holds.
By 2.2, for ρ := {P} with binary P the sentence

ϕ := ∃u∃v∀x∀y(Pxy → y = u · x+ v)

(ϕ expresses that the elements of P lie on some line not parallel to the y-axis)
must be equivalent in T for finite states to a ρ-restricted sentence ψ. In fact, as
ψ we can take

ψ := ∃x1y1 ∈ P∃x2y2 ∈ P∀xy ∈ P ((x = x1 ∧ y = y1) ∨
(x1 6= x2 ∧ x 6= x1 ∧ y − y1

x− x1
=
y2 − y1
x2 − x1

)).

Example 2.5 Let T be the theory of (Z, <,+) and ρ := {P} with unary P .
H(T ) holds by quasi-o-minimality of T (cf. [3]). By 2.1, the L(ρ)-sentence

ϕ := “P contains even and odd numbers”

is equivalent for finite states to a ρ-bounded sentence ψ, e.g., to

ψ := ∃x ∈ P∃y ∈ P∃u∃v(x = u+ u ∧ y = v + v + 1).

But, ϕ is not equivalent to a ρ-restricted sentence. Therefore, the assumption
of quantifier elimination cannot be omitted in the preceding corollary.

Example 2.6 Let T be the theory of Example 1.4, i.e., the theory of an equiv-
alence relation E that, for every n ≥ 1, has exactly one equivalence class of
cardinality n. T is stable and H(T ) fails. Hence, by 2.3, there is a formula that
is not equivalent in T for finite states to a bounded one. In fact, the sentence

ϕ := “P is an equivalence class”

is not equivalent to a {P}-bounded one for finite states. To prove this, e.g., for
each n ≥ 1, introduce a new unary relation R≥n with

R≥n := {a ∈M | the equivalence class of a has ≥ n elements}.
Then, T1 := Th(M,E, (R≥n)n≥1) allows elimination of quantifiers. But ϕ is not
equivalent in T1 for finite states to a restricted formula.

A theory T has the finite cover property (we denote this by fcp(T )) if there
is a formula ϕ(x, ȳ) such that for all k ≥ 1 there is a sequence (āi)i∈I in some
model of T such that the set {ϕ(x, āi) | i ∈ I} is not finitely satisfiable but
every subset of at most k formulas is.

The theory T of the preceding example is a standard example of a stable
theory with the finite cover property. We have proved that this theory does not
have the pseudo-finite homogeneity property. This proof does not generalize to
arbitrary theories with the fcp. The theory constructed in the following example
is stable, has the fcp and the pseudo-finite homogeneity property. In the next
section we shall see that H(T ) holds for every theory T which does not have fcp.
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Example 2.7 Let L = {E,F} with binary relation symbols E and F . Take an
L-structure M0 such that

E is an equivalence relation, every equivalence class is finite, and
for every n ≥ 1 there is exactly one class of cardinality n; F is a
symmetric and antireflexive relation (a graph relation), F ⊆ E, and
F is a cycle of length n in the equivalence class of cardinality n.

Let T be the theory of M0. Clearly, T is stable and has the fcp. We show
that H(T ) holds. So, let (M, r, t, h) be ω-saturated, M |= T , r and t pseudo-
finite in M , and h : r → t onto and elementary. Furthermore, let a ∈ M be
arbitrary. We have to find b ∈M such that h∪{(a, b)} is elementary. Note that
every infinite equivalence class, with respect to F consists of infinitely many “Z-
components” (connected components). An analysis of the different possibilities
for tp(a/r) shows that we find such an element b in all cases but one: namely,
if a is in the equivalence class of an element a0 ∈ r, but is an element of a new
Z-component (that is, no element of this component lies in r), and moreover, in
the equivalence class of h(a0) every Z-component contains an element of t. We
show that this cannot happen. First note that for every finite subset s in the
model M0, every c0 ∈ s and k ≥ 1, the following statements (1)k and (2)k are
equivalent:

(1)k The union of the k-balls whose center are elements of s equivalent to c0 is
the whole equivalence class of c0, i.e.,

M |= ∀x(Exc0 → (sx ∨ ∃y ∈ s
∨

1≤l<k

∃y1 . . . ∃yl

(Fyy1 ∧ . . . ∧ Fyl−1yl ∧ yl = x))).

(2)k For every d ∈ s in the equivalence class of c0, there are “at both sides of
d” elements in s at a distance < 2 · k, i.e.,

M |= ∀x ∈ s∃y ∈ s∃z ∈ s
(Exc0 →

∨

1≤l<2k

∨

1≤m<2k

∃y1 . . . ∃yl∃z1 . . . ∃zm(¬y1 = z1 ∧

(Fxy1 ∧ . . . ∧ Fyl−1yl ∧ yl = y ∧
∧

1≤i≤l

¬yi = x) ∧

(Fxz1 ∧ . . . ∧ Fzm−1zm ∧ zm = z ∧
∧

1≤i≤m

¬zi = x))).

We come back to (M, r, t, h). By assumption, in the equivalence class of h(a0)
every Z-component contains an element of t. Hence, by ω-saturation of (M, r, t, h),
there is k ≥ 1 such that (1)k holds for s := t and c0 := h(a0). Therefore, since t
is pseudo-finite, (2)k is true for t and h(a0). But the formula in (2)k is bounded
and hence is preserved by L-elementary mappings, thus, (2)k and therefore, (1)k

are true for s := r and c0 := a0, a contradiction.
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We turn to the second collapsing result. In the next definition and theorem we
fix a binary relation symbol <. If < is in L, then we asssume that T contains
the axioms of orderings for < and we set L0 = {<}. Otherwise, let L0 = ∅.

An L(ρ)-sentence ϕ is locally L0-generic in T , if for some (or, equivalently,
all) models M of T and all finite states s̄, all partial L0-isomorphisms h (i.e., h
is injective and <-preserving, in case L0 = {<}, and injective, in case L0 = ∅)
with fld(s̄) ⊆ do(h), we have

M |= ϕ(s̄) iff M |= ϕ(h(s̄)).

Part a) of the next theorem is shown in [3] (and in [6] for o-minimal theories).
We do not know, whether in part b) the assumption H(T ) can be omitted.1

Theorem 2.8 a) Assume <∈ L and T contains the theory of orderings. Set
L0 = {<}. If H(T ) holds, then every L(ρ)-sentence ϕ, which is locally L0-
generic, is equivalent in T for finite states to an L0(ρ)-sentence.

b) Set L0 = ∅. If T is stable and H(T) holds, then every L(ρ)-sentence
ϕ, which is locally L0-generic, is equivalent in T for finite states to an L0(ρ)-
sentence.

Proof. If not, a compactness argument gives a pseudo-finite (r̄, r̄′), a partial
L0-isomorphism h with do(h) = fld(r̄), h(r̄) = r̄′ such that

M |= ϕ(r̄) ∧ ¬ϕ(r̄′) and (M, r̄)|L0(ρ) ≡ (M, r̄′)|L0(ρ).

It suffices to show that one can further assume that fld(r̄) and fld(r̄′) are subsets
of one set of L0-indiscernibles for L-formulas (i.e., <-indiscernibles in a) and
total indiscernibles in b)). Then, h is L-elementary, and therefore, by H(T ),
we see, arguing as in the preceeding theorem, that h is L(ρ)-elementary, a
contradiction.

To get the pseudo-finite states into indiscernibles, we take a disjoint copy ρ′

of ρ and let T1 consist of the L ∪ ρ ∪ ρ′ ∪ {I, f, f ′}-sentences in (1)–(7):

(1) Th(M, r̄, r̄′)

(2) I is infinite and L0-indiscernible for L-formulas

(3) f and f ′ are partial L0-isomorphisms

(4) fld(r̄) ⊆ do(f), fld(r̄′) ⊆ do(f ′)

(5) rg(f), rg(f ′) ⊆ I

(6) ϕ(f(r̄)), ¬ϕ(f(r̄′))

(7) (f(r̄), f(r̄′)) is pseudo-finite.

1Added in proof: Meanwhile Baldwin and Benedikt ([1]) have proved that the assumption
H(T ) can be omitted. Compare also [7].
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We show that T1 is satisfiable and hence, by Robinson’s joint consistency lemma,
T1 ∪ Th(M, r̄, r̄′, h) is satisfiable. In a corresponding model, g := f ′ ◦ h ◦ f−1

is a partial L0-isomorphism with g(f(r̄)) = f ′(r̄′), and fld(f(r̄)) and fld(f ′(r̄′))
are contained in a set of indiscernibles.

T1 is satisfiable: Let γ ∈ Th(M, r̄, r̄′), m ∈ ω, and ψ1(x̄), . . . , ψk(x̄) be L-
formulas. It suffices to show that there exists a model of γ and of the sentences in
(3)–(7) such that I contains at least m elements and is a set of L0-indiscernibles
with respect to ψ1(x̄), . . . , ψk(x̄).

By pseudo-finiteness of (r̄, r̄′) there are finite s̄, s̄′ in some model N of T
such that

N |= γ ∧ ϕ(s̄) ∧ ¬ϕ(s̄′).

By Ramsey’s theorem, there is a set I, |I| ≥ max{m, |fld(s)|, |fld(s′)|} of L0-
indiscernibles with respect to ψ1(x̄), . . . , ψk(x̄). Choose partial L0-isomorphisms
f and f ′ with domain fld(s) and fld(s′), respectively, and range in I. Set
s̄1 := f(s̄), s̄′1 := f(s̄′). By local genericity of ϕ, N |= ϕ(s̄1) ∧ ¬ϕ(s̄′1). 2

Example 2.9 Let L := {ε,<} with binary ε. Consider the structure (Vω, ε, <),
where Vω is the set of hereditarily finite sets, where ε is the ∈-relation on Vω and
< a total ordering of Vω, say, of order type ω. Let T be the theory of (Vω, ε, <).
For ρ = {P} with unary P , let ϕ be the L(ρ)-sentence stating that there is a
bijection between P and an even natural number which, thus, expresses that the
cardinality of P is even. Clearly, ϕ is locally L0-generic in T , but not equivalent
to an L0(ρ)-sentence. Hence, H(T ) fails.

3 Pseudo-finite saturation

We already remarked that there is a relationship between the pseudo-finite ho-
mogeneity property and the finite cover property. In fact, in this final section,
we show that the saturation property that corresponds to the pseudo-finite ho-
mogeneity property even is equivalent to the finite cover property.

We introduce S(T, λ) by

if r is a pseudo-finite subset of a model M of T and (M, r) is λ-
saturated, then every type in S1(r) is realized in (M, (a)a∈r)

(S1(r) denotes the set of complete types in a variable x with parameters from
r). S(T ) means that S(T, λ) holds for some λ. T has the pseudo-finite saturation
property, if S(T ) holds.

Clearly, if µ ≤ λ then S(T, µ) implies S(T, λ). Below we shall see that S(T ) is
equivalent to S(T, ω1).

Proposition 3.1 S(T ) implies H(T ).

Proof. Assume S(T, λ) holds. Let (M, r, t, h) be λ-saturated with pseudo-
finite r and t and elementary and bijective h. For a ∈ M and p := tp(a/r),
h(p) := {ϕ(x, h(ā)) | ϕ(x, ā) ∈ p} is a type in S1(t). By S(T, λ), there is b ∈M
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realizing h(p). Then, h ∪ {(a, b)} is elementary. 2

There are theories with H(T ) but whithout S(T ): By o-minimality, H(T ) holds
for the theory T of the ordering of the rational numbers. But S(T ) fails, as
shown by:

Lemma 3.2 If S(T ) holds then T is stable.2

Proof. By contradiction, suppose that T is unstable. Let λ be a cardinal.
We show that S(T, λ+) fails. By unstability, there is a model M of T and a
subset A of M such that

(+) |M | = |A| = 2λ and |S1(A)| > 2λ.

We may assume that there is a pseudo-finite subset r of M with A ⊆ r (since,
for ρ := {P} with a new unary predicate P ,

Th(M, (a)a∈A) ∪ F (T, ρ) ∪ {Pa | a ∈ A}
is finitely satisfiable). Choose a λ+-saturated elementary extension (M ′, r′) of
(M, r) of cardinality 2λ. By(+), there are types in S1(A), and hence in S1(r′),
that are not realized in M ′. 2

Theorem 3.3 If T does not have the finite cover property, then S(T, ω1) holds.

Proof. Let (M, r) |= T , where r is pseudo-finite and (M, r) is ω1-saturated.
Fix p ∈ S1(r). Since a theory without the fcp is stable, p is definable over r, i.e.,
for every L-formula ϕ(x, ȳ) there is an L-formula δϕ(ȳ, z̄) and c̄ϕ ∈ r such that
for all ā ∈ r,

M |= δϕ(ā, c̄ϕ) iff ϕ(x, ā) ∈ p.
Let P be a new unary relation symbol. For an L-formula ϕ(x, ȳ) set

χϕ(x, c̄ϕ) := ∀ȳ ∈ P (δϕ(ȳ, c̄ϕ) → ϕ(x, ȳ)).

By ω1-saturation of (M, r), it suffices to show that

{χϕ(x, c̄ϕ) | ϕ(x, ȳ) an L-formula}
is finitely satisfiable in (M, r, (c̄ϕ)ϕ∈L). If not, there are ϕ1(x, ȳ), . . . , ϕm(x, ȳ)
such that

{χϕ1(x, c̄ϕ1), . . . , χϕm(x, c̄ϕm)}
is not satisfiable. First we show that we can assume m = 1. Let

ϕ0(x, ȳ, ū) := ((u0 = u1 ∧ ¬u0 = u2 ∧ . . . ∧ ¬u0 = um) → ϕ1(x, ȳ)) ∧
((¬u0 = u1 ∧ u0 = u2 ∧ . . . ∧ ¬u0 = um) → ϕ2(x, ȳ)) ∧

...
((¬u0 = u1 ∧ ¬u0 = u2 ∧ . . . ∧ u0 = um) → ϕm(x, ȳ)).

2In [3] the pseudo-finite isolation property I(T ) is considered and related to H(T ). Both
S(T ) and I(T ) imply H(T ). But S(T ) and I(T ) contradict each other, since I(T ) implies that
T is unstable.
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Then, χϕ0(x, c̄ϕ0) is not satisfiable (M, r, c̄ϕ0).
So let ϕ(x, ȳ) be an L-formula such that χϕ(x, c̄ϕ) is not satisfiable in

(M, r, c̄ϕ). Since non-fcp(T ), there is a natural number k such that

for every finite sequence (āi)i∈I in a model of T , if every subset of
{ϕ(x, āi) | i ∈ I} of at most k formulas is satisfiable, so is the whole
set.

But then, for every N |= T and any finite s ⊆ N , (N, s) is a model of

∀z̄((∀ȳ1 ∈ P . . . ∀ȳk ∈ P (δϕ(ȳ1, z̄) ∧ . . . ∧ δϕ(ȳk, z̄) → ∃x∧
1≤i≤k ϕ(x, ȳi)))

→ ∃x∀ȳ ∈ P (δϕ(ȳ, z̄) → ϕ(x, ȳ)),

and hence, (M, r) is a model of this sentence. For z̄ = c̄ϕ, the hypothesis of
this sentence is satisfied in (M, r) (since p is a type), and hence, χϕ(x, c̄ϕ) is
satisfiable in (M, r, c̄ϕ), contrary to our assumption. 2

By 3.1 and 3.3 we get

Corollary 3.4 If T does not have the finite cover property, then T has the
pseudo-finite homogenity property.

Theorem 3.5 If T has the finite cover proerty, then S(T ) does not hold.

Proof. If T is unstable then S(T ) fails by 3.2. So assume that T is stable and
has the fcp(T ). Then, (cf. [8]) there is a formula ϕ(x, y, z̄) such that

for every model M of T and every ā ∈M , ϕ(·, ·, ā) is an equivalence
relation and for every natural number n there is ān ∈ M such that
ϕ(·, ·, ān) has ≥ n but only finitely many equivalence classes.

Fix a model N of T and ān ∈ N according to the fcp. Let sn be a complete
set of representatives of ϕ(·, ·, ān). Let λ be an infinite cardinal. We show that
S(T, λ) fails. By compactness, there is a λ-saturated model (M, r) and ā ∈ M
such that r is infinite, pseudo-finite, and a complete set of representatives of
ϕ(·, ·, ā). So t := r ∪ {ā} is pseudo-finite, but the type

{¬ϕ(x, b, ā) | b ∈ r}

is not realized in (M, (e)e∈t). 2

By 3.3 and 3.5:

Corollary 3.6 T has the pseudo-finite saturation property iff T fails to have
the finite cover property.

Corollary 3.7 S(T ) is equivalent to S(T, ω1).

We show that there are theories T with S(T, ω1) but without S(T, ω).

Example 3.8 Let T be the L := {En | n ≥ 0}-theory stating that
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every En is an equivalence relation, E0 ⊇ E1 ⊇ . . ., E0 has exactly
one equivalence class, and, for every n ≥ 1, every En-class splits into
two En+1-classes.

Clearly, T is complete and does not have the finite cover property, hence, S(T )
holds. We show that S(T, ω) fails. For this purpose, let ρ := {P} with unary P
and let ϕn state that every En-class contains elements of P and elements of the
complement of P . Then, T1 := T ∪ {ϕn | n ∈ ω} is complete in L(ρ) and every
finite subset of T1 has a model (N, s), where N is a model of T and s is finite.
Take a countable ω-saturated model (M, r) of T1. Then, r is pseudo-finite in
M , and it is not hard to see that there are 2ℵ0 -many types in S1(r); so, some
of them are not realized in (M, (a)a∈r).

We find that the pseudo-finite saturation property is a nice, conceptually clear
reformulation of the non fcp. It also is a manageable one: We demonstrate this
by reproving the result of [2] showing that a theory allows the elimination of all
the Ramsey quantifiers in the ω-interpretation in case it does not have the fcp.

Proposition 3.9 If S(T ) holds then the Ramsey quantifiers are eliminable.

Proof. Denote by Qn the n-th Ramsey quantifier, i.e.,

M |= Qnx1 . . . xnϕ(x̄, b̄) iff there is an infinite set A
homogeneous for ϕ(x̄, b̄)

(A is homogeneous for ϕ(x̄, b̄), if for all ā = a1 . . . an ∈ A, M |= ϕ(ā, b̄)).
Let Hn

k be the corresponding k-th first-order definable approximation of Qn,
i.e.,

M |= Hn
k x1 . . . xnϕ(x̄, b̄) iff there is a set A of cardinality at least k

homogeneous for ϕ(x̄, b̄).

By a standard compactness argument (cf. [2]), one can prove that the Ramsey
quantifiers are eliminable in T just in case

for every first-order formula ϕ(x̄, ȳ) there is a natural number k such
that

T |= ∀ȳ(Hn
k x̄ϕ(x̄, ȳ) → Qnx̄ϕ(x̄, ȳ)).

Now assume that T does not allow the elimination of Ramsey quantifiers: By
completeness of T , for some ϕ(x̄, ȳ) there is a model N of T such that for every
k there are c̄k ∈ N and a finite set sk homogeneous for ϕ(x̄, c̄k) with at least k
elements such that for all b ∈ N \ sk, the set sk ∪ {b} is not homogeneous for
ϕ(x̄, c̄k). By compactness, there is an ω1-saturated (M, r) and c̄ ∈M such that
r is infinite, pseudo-finite in M , and a maximal set homogeneous for ϕ(x̄, c̄).
Therefore, t := r ∪ {c̄} is pseudo-finite, (M, t) is ω1-saturated, and the type
p ∈ S1(t),

p := {¬x = a | a ∈ r} ∪ {ϕ(ȳ, c̄) | ȳ ∈ {x} ∪ {a | a ∈ r}}
is not realized in (M, (a)a∈t). Thus, S(T ) does not hold, a contradiction. 2
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