Siegel

Albert-Ludwigs-Universität Freiburg

Mathematisches Institut

Prof. Ernst Kuwert


List of Publications of E. Kuwert

September 2021

  1. Der Minimalflächenbeweis des Positive Energy Theorem. Vorlesungsreihe des SFB 256 Nr. 14, Universität Bonn 1990.
  2. Embedded solutions for exterior minimal surface problems. Manuscr. Math. 70 (1990), 51-65.
  3. A bound for minimal graphs with a normal at infinity. Calc. Var. 1 (1993), 407-416.
  4. On solutions of the exterior Dirichlet problem for the minimal surface equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 445-451.
  5. Minimizing the energy of maps from a surface into a 2-sphere with prescribed degree and boundary values. Manuscr. Math. 83 (1994), 31-38.
  6. Harmonic maps between flat surfaces with conical singularities. Math. Z. 221 (1996), 421-436.
  7. Weak limits in the free boundary problem for immersions of the disk which minimize a conformally invariant integral. Geometric Analysis and the Calculus of Variations , 203--215, Internat. Press, Cambridge, MA, 1996.
  8. with F. Duzaar: Minimization of conformally invariant energies in homotopy classes. Calc. Var.6 (1998), 285--313.
  9. A compactness result for loops with an H½-bound. J. Reine Angew. Math. 505 (1998), 1-22.
  10. with R. Schätzle: Gradient flow for the Willmore functional. Comm. Anal. Geom. 10 (2002), no. 2, 307--339.
  11. with R. Schätzle: The Willmore flow with small initial energy. J. Differential. Geom. 57 (2001), no. 3, 409--441.
  12. with G. Dziuk and R. Schätzle: Evolution of Elastic Curves in Rn: Existence and Computation. SIAM J. Math. Anal. 33 (2002), no. 5, 1228-1245.
  13. Note on the Isoperimetric Profile of a Convex Body. Geometric Analysis and Nonlinear Partial Differential Equations, 195--200 , S. Hildebrandt and H. Karcher (eds.), Springer Verlag, 2003.
  14. with M. Bauer: Existence of minimizing Willmore surfaces of prescribed genus. International Mathematics Research Notices 10 (2003), 553--576.
  15. with R. Schätzle: Removability of isolated singularities of Willmore surfaces. Annals of Mathematics 160 (2004), no. 1, 315--357.
  16. with R. Schätzle: Branch points for Willmore surfaces. Duke Mathematical Journal 138 (2007), 179--201.
  17. with W. Bürger: Area-minimizing disks with free boundary and prescribed enclosed volume. J. Reine Angew. Math. 621 (2008), 1--27.
  18. with Y. Li and R. Schätzle: The large genus limit of the infimum of the Willmore energy. Amer. J. Math. 132 (2010), 37--51.
  19. with R. Schätzle: Closed surfaces with bounds on their Willmore energy. Annali Sc. Norm. Sup. Pisa. Cl. Sci. 11 (2012), 605--634.
  20. with Y. Li: W^{2,2} conformal immersions of a closed Riemann surface into Rn , Comm. Anal. Geom. 20 (2012), 313--340.
  21. with R. Schätzle: The Willmore functional, Topics in modern regularity theory, 1--115, CRM Series, Scuola Normale Superiore Pisa, 2012.
  22. with R. Schätzle: Minimizers of the Willmore energy under fixed conformal class. J. Differential Geometry 93 (2013), 471--530.
  23. with J. Lorenz: On the stability of the CMC Clifford tori as constrained Willmore surfaces. Ann. Glob. Anal. Geom. 44 (2013), 23--42.
  24. with T. Lamm and Y. Li: Two-dimensional curvature functionals with superquadratic growth. J. Eur. Math. Soc. 17 (2015), 3081--3111.
  25. with A. Mondino and J. Schygulla: Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds.
    Math. Ann.
    359 (2014), 379--425.
  26. with R. Alessandroni: Local solutions to a free boundary problem for the Willmore functional. Calc. Var. Partial Differential Equations 55:24 (2016), 29 pp.
  27. with Y. Li: Asymptotics of Willmore minimizers with prescribed small isoperimetric ratio. SIAM J. Math. Anal. 50 (2018), 4407--4425.
  28. with J. Scheuer: Asymptotic estimates for the Willmore flow with small initial energy. International Mathematics Research Notices, Vol. 2021 (18), pp. 14252--14266.
  29. with T. Lamm: Reflection of Willmore surfaces with free boundaries. Canad. J. Math. 73 (2021), 787--804.
  30. with V. Bangert: An area bound for surfaces in Riemannian manifolds. J. Differential Geom. (accepted 2022)
  31. with M. Müller: Curvature varifolds with orthogonal boundary, Preprint, 2022.

To the Analysis Group.