Riemannian Geometry Graphic
      Anda Degeratu, PhD

Research Interests:
Geometry from Physics, Mathematics from/for Theoretical Neuroscience

  • o Differential Geometry.
  • o Complex Geometry.
  • o Partial Differential Equations.
  • o Gauge Theory.
  • o Mathematical Physics.
  • o Mathematical Biology.

Papers and Preprints:

  • o R. Conlon, A. Degeratu, F. Rochon: Quasi-asymptotically conical Calabi-Yau manifolds, arXiv preprint 2016.
  • o K. Morrison, A. Degeratu, V. Itskov, C. Curto: Diversity of emergent dynamics in competitive threshold-linear networks: a preliminary report, arXiv preprint 2016.
  • o A. Degeratu, T. Walpuski: Rigid HYM connections on tautological bundles over ALE crepant resolutions in dimension three, SIGMA 12 (2016), 017, 23 pages; doi:10.3842/SIGMA.2016.017.
  • o A. Degeratu, R. Mazzeo: Fredholm theory for elliptic operators on quasi-asymptotically conical spaces, arXiv preprint 2014.
  • o C. Curto, A. Degeratu, V. Itskov: Encoding binary patterns of neural activity in networks of threshold-linear neurons, Neural Computation, Volume 25 (2013), pp 2858-2903; doi:10.1162/NECO_a_00504, arXiv preprint 2012.
  • o A. Degeratu, M. Stern: Witten spinors on nonspin manifolds, Communications in Mathematical Physics, Volume 324, Issue 2 (2013), pp 301-350; doi:10.1007/s00220-013-1804-0, arXiv preprint 2011.
  • o C. Curto, A. Degeratu, V. Itskov: Flexible memory networks, Bulletin of Mathematical Biology,Volume 74 (2012), pp 590-614; doi:10.1007/s11538-011-9678-9, arXiv preprint 2010, SfN Poster.
  • o A. Degeratu, K. Wendland: Friendly giant meets pointlike instantons? On a new conjecture by John McKay, in "Moonshine - The First Quarter Century and Beyond, A Workshop on the Moonshine Conjectures and Vertex Algebras", LMS Lecture Notes Series no. 372 (2010), 55-127; Augsburg preprint number 037/2007.
  • o A. Degeratu: Eta invariants from Molien series, The Quarterly Journal of Mathematics Volume 60, Number 3 (2009); doi: 10.1093/qmath/han016, [pdf].
  • o A. Degeratu, M. Stern: The Positive Mass Conjecture for non-spin manifolds; math.DG/0412151 (has a sign error in Proposition 6.5).
  • o A.Degeratu: Flops of Crepant Resolutions, Turkish J. Math. 28 (2004), no. 1, 23--40 (Proceedings ofthe 10th Gokova Geometry and Topology Conference); [pdf].
  • o A. Degeratu: Geometrical McKay Correspondence for Isolated Singularities; math.DG/0302068.
  • o My PhD thesis: Eta Invariants and Molien series for Unimodular groups, MIT 2001; [pdf].


  • o K. Morrison, A. Degeratu, V. Itskov, C. Curto: Pattern Generation in Simple Inhibition-Dominated Networks, Cosyne poster (2016).
  • o C. Curto, A. Degeratu, V. Itskov: Perturbative memory encoding in recurrent networks, Cosyne Poster (2012).
  • o C. Curto, A. Degeratu, V. Itskov: Recurrent vs feedforward networks: differences in neural code topology, Cosyne Poster (2012).
  • o C. Curto, A. Degeratu, V. Itskov: Flexible memory networks, Cosyne Poster (2010).


  • o A.Degeratu: Singular spin structures and Witten spinors; Oberwolfach Report for the Workshop "Stratified spaces: Joining Analysis, Topology and Geometry", December 11 - 17, 2011;
  • o "Mini-Workshop: Higher Dimensional Elliptic Fibrations", Abstracts from the mini-workshop held October 3 - 9, 2010; Organized by Gavin Brown, Anda Degeratu and Katrin Wendland, Oberwolfach Reports Vol. 7 (2010), no. 4, 2651 - 2680.
  • o A.Degeratu: Fredholm theory on quasi-asymptotically conical manifolds, Oberwolfach Report for the Workshop "Analysis and Geometric Singularities", August 19 - 25, 2007; [pdf].
  • o A.Degeratu: On the positive mass conjecture in higher dimensions, Oberwolfach Report for the Workshop "Mathematical Aspects of General Relativity", January 8 - 14, 2006; [pdf].
  • o A.Degeratu: Geometrical McKay correspondence, Oberwolfach Report for the MiniWorkshop "Finite Groups", May 16 - 22, 2004; [pdf].
  • o A. Degeratu: Crepant resolutions of Calabi-Yau orbifolds, Oberwolfach Report for the MiniWorkshop "Geometry and Duality in String Theory", May 16 - 22 , 2004; [pdf].
  • o A. Degeratu, M. Haskins: Open problems in L^2-cohomology [pdf]; notes written for the AIM workshop L^2-harmonic forms in geometry and physics.

     N.B. This web page is shamelessly adapted from the MIT Media Lab Web Page