Wann und wo: Di 14 - 16, SR 404, Ernst-Zermelo-Str. 1
  Vorbesprechung: Mo, 16.07.2018, 14:15, SR119,
  Ernst-Zermelo-Str. 1
  
  Um teilzunehmen, kommen Sie bitte in die Vorbesprechung des Seminares; eine
Teilnehmerliste wird nicht vorab ausliegen. 
  Topic:
  
  A lattice Γ of rank n in Rn is an
  additive subgroup of Rn of the form
  Γ=Ze1⊕...⊕Zen
  where (e1,...,en) is a basis
  of Rn.
  An example of a lattice in Rn is
  Zn⊂Rn. An important tool to
  study
  lattices, the so-called theta function of a lattice, comes from
  complex analysis. It is a holomorphic function on the complex upper
  half plane H and contains information about distributions of lattice
  points of fixed length. For example, if a lattice Γ is even,
  which means that the square of the length of x is an even integer
  for each x∈Γ, then the theta function can be used to
  count
  the number of lattice points of length √(2r)
  for each positive integer r. If an even lattice  has the so-called
  unimodularity property, then the corresponding theta function
  becomes
  a modular form, which is a holomorphic function on H with
  certain symmetry properties. The theory of modular forms is useful
  in the classification of lattices, for instance, it can be used to
  show that there is a unique even unimodular lattice of rank 8
  in R8 up to isomorphism.
  
  The theory of lattices interacts deeply with coding theory.  Here, by
  definition, a code is a certain fixed set whose elements are the
  "codewords". Choosing this "dictionary" and its mathematical
  properties
  conveniently can enable correction of transmission errors. As such,
  coding theory has many applications, for example in the telephone
  and
  satellite communication. There are some surprising parallels between
  the theory of lattices and coding theory. For example, the notion of
  unimodularity in the theory of lattices is analogous to the notion
  of
  self duality in coding theory, the theta function in the theory of
  lattices is analogous to the so-called weight numerator in coding
  theory and so on. 
  In this seminar, we will study lattices, codes and modular forms.
  We will also explore connections between them including the ones
  mentioned above. 
  Literatur:
  
Die Links führen auf Webseiten, von denen aus dem
 Universitätsnetz die jeweiligen Referenzen
 zugänglich sind. Falls kein Link gesetzt ist, finden
 Sie die Referenz in der Bibliothek des Mathematischen Institutes
 Freiburg.
 
 
Vortragsprogamm:
Das Vortragsprogramm finden Sie 
hier.
Die Vorträge können auf Deutsch oder auf Englisch präsentiert werden.
Tutorium: Dr. Santosh Kandel