Charlotte (Amann-)Bartnick

[Bild Charlotte Bartnick]

Über mich:

Ich bin Doktorandin in der Abteilung für Mathematische Logik unter der Betreuung von Prof. Dr. Amador Martin-Pizarro. Ich interessiere mich für geometrische Stabilitätstheorie, definierbare Gruppe in stabilen und einfachen Theorien sowie Theorien von Körpern mit Operatoren.

Kontakt

Am besten bin ich per Mail zu erreichen.

E-Mail: charlotte[dot]bartnick[at]math[dot]uni-freiburg[dot]de
Telefon: 0049 761 / 203 5611
Sprechstunde: Montags von 11 bis 12 Uhr (während der Vorlesungszeit) oder nach Vereinbarung per Mail
Raum: 305

Abteilung für Mathematische Logik
Albert-Ludwigs-Universität Freiburg
Ernst-Zermelo-Straße 1
79104 Freiburg i. Br.
Deutschland

Arbeiten

  • Stationarity and elimination of imaginaries in stable and simple theories, Fund. Math. 270 (2025), no.3, 277-299, DOI: 10.4064/fm241209-15-4, see also ArXiv 2406.16586 (2025): We show that types over real algebraically closed sets are stationary, both for the theory of separably closed fields of infinite degree of imperfection and for the theory of beautiful pairs of algebraically closed field. The proof is given in a general setup without using specific features of theories of fields.
    Moreover, we generalize results of Delon as well as of Messmer and Wood that separably closed fields of infinite degree of imperfection and differentially closed fields of positive characteristic do not have elimination of imaginaries. Using work of Wagner on subgroups of stable groups, we obtain a general criterion yielding the failure of geometric elimination of imaginaries. This criterion applies in particular to beautiful pairs of algebraically closed fields, giving an alternative proof of the corresponding result of Pillay and Vassiliev.
  • Embedding stable groups into algebraic groups, preprint, ArXiv 2510.24504 (2025): Adapting a proof of Bouscaren and Delon, we show that every type-definable connected group in a given stable theory of fields embeds into an algebraic group, under a condition on the definable closure. We also present general hypotheses which yield a uniform description of the definable closure in such theories of fields.
    The setting includes in particular the theories of separably closed fields of arbitrary degree of imperfection and differentially closed fields of arbitrary characteristic.

Assistenzen

Doktorandenvertretung

Als gewählte Doktorandenvertreterin setze ich mich für die Vernetzung der Promovierenden am Mathematischen Institut und der Fakultät ein. Außerdem kümmert sich die Doktorandenvertretung um die Rechte der Promovierenden und die Repräsentation in universitären Gremien. Weitere Informationen über unsere Arbeit finden sich unter https://www.phd.mathphys.uni-freiburg.de/.