Wann und wo: Di 14 - 16, HSII, Albertstrasse 23b
Vorbesprechung:
Dienstag, 09.02.2021, 14:00 - 16:00 im virtuellen bbb-Raum SR125.
Bei Interesse bitte Voranmeldung bis 05.02.2021 per e-Mail an
Dr.
Mara Ungureanu.
Topic:
Moduli spaces parametrising objects associated with a given variety X
are a rich source of spaces with interesting structures. Not only do they inherit
various properties from X, but they may also bring to light hidden structures
that cannot be accessed via the original variety.
The purpose of this seminar is to explore an example of this phenomenon.
We shall introduce the Hilbert scheme X[n] of a smooth surface X parametrising
n-tuples of points of X. We shall study its geometric properties and establish, among
other things, the non-trivial fact that X[n] is itself a smooth variety.
One of the new and surprising features of X[n] is that one
can construct a representation of the so-called Heisenberg algebra on its cohomology groups.
We shall see that this is not just a pretty result, but it is also very useful in understanding
how characteristic classes of line bundles on X relate to those of certain interesting
vector bundles on X[n]. Moreover, this construction also provides a
connection to mathematical physics as it gives a geometric realisation of a
formula for the Euler characteristic of the moduli space of N=4
Yang-Mills instantons, though this will be beyond the scope of our seminar.
Literatur:
Die Links führen auf Webseiten, von denen aus dem
Universitätsnetz die jeweiligen Referenzen
zugänglich sind. Falls kein Link gesetzt ist, finden
Sie die Referenz in der Bibliothek des Mathematischen Institutes
Freiburg.
Vortragsprogamm:
Das Vortragsprogramm finden Sie
hier.
Die Vorträge können auf Deutsch oder auf Englisch präsentiert werden.
Tutorium: Dr. Mara Ungureanu