|
|
Integrable Systems and the Self-Duality Equations
Titel: |
Integrable Systems and the Self-Duality Equations |
Dozent(in): |
Gastprofessor Dr. Emma Carberry |
Termin: |
Do, 14:00-15:30 (L1 2004) |
Gebäude/Raum: |
L1 2004 |
Ansprechpartner: |
Gastprofessor Dr. Emma Carberry |
Inhalt der Lehrveranstaltung:
We will begin with a general tour of integrable systems as they appear in geometry, with a number of examples of integrable systems and an explanation of how they relate to Lax equations and symplectic geometry. We will then discuss the seminal work of Hitchin on the moduli space of solutions to the self-duality equations over a Riemann surface. Beginning: Thursday, 24th April 2008, Room 2004, L1 ! and each Thursday, 14:00 -15:30 h, Room 2004, L1 !
Download as PDF file
Literatur zur Lehrveranstaltung:
Twistors, Loop Groups, and Riemann Surfaces, by Hitchin, Segal, Ward (Hitchin's Chapter);
Linearizing Flows and a Cohomological Interpretation of Lax Equations, by Philipp A. Griffiths - American Journal of Mathematics, Vol. 107, No. 6 (Dec., 1985), pp. 1445-1484;
The self-duality equations on a Riemann surface, Nigel Hitchin, Proc. London Math. Soc. (3) 55 (1987), 59-126. MR 89a32021;
Stable bundles and integrable systems, Nigel Hitchin, Duke Math. J. 54 (1987), 91-114, MR 88i:58068
(The last two will not be studied in full; we will do as much as time permits)
weitere Informationen zu der Lehrveranstaltung:
empfohlenes Studiensemester der Lehrveranstaltung: |
ab dem 8. Semester |
Fachrichtung Lehrveranstaltung: |
Dipl.-Mathematik |
Nummer der Lehrveranstaltung: |
06081 |
Beginn der Lehrveranstaltung: |
ab 24.04.2008 |
Dauer der Lehrveranstaltung: |
2 SWS |
Typ der Lehrveranstaltung: |
V - Vorlesung |
Leistungspunkte: |
6 LP für Vorlesung + Übung |
Bereich: |
Geometrie |
Prüfung: |
Sonstige |
Lehrveranstaltungspflicht: |
Wahl |
Begleitende Lehrveranstaltung(en): |
06083 |
Semester: |
SS 2008 |
|