Wann und wo: Di 14 - 16, SR 403, Eckerstr. 1
Vorbesprechung: Di 06.02.2018, 12:30, SR 318, Eckerstr. 1
Um teilzunehmen, kommen Sie bitte in die Vorbesprechung des Seminares; eine
Teilnehmerliste wird nicht vorab ausliegen.
Topic:
The concept of a Lie group arises naturally by putting together the algebraic notion of a group with the
geometric notion of a smooth manifold. A Lie group is a smooth manifold with a group structure such
that the group operations are smooth. Lie groups arise in a natural way as symmetries of a geometric
object. The general linear group GLn(R) is our guiding example of a Lie group.
A representation of a Lie group G on a vector space V is a group homomorphism
ρ: G→GL(V). Similarly, the notion of Lie algebra appears naturally. For example,
the tangent space 𝔤 at the
identity element of a Lie group
G has this structure.
For G=GLn(R), this
yields 𝔤 = MatR(n×n)
with the composition rule given by the commutator [X,Y]=XY-YX. A vector space with such a
composition rule is called a Lie algebra.
In this seminar, we will study (matrix) Lie groups, Lie algebras and their representations. We will
introduce the notion of Lie groups and Lie algebras and discuss the correspondence between
them. Since finite dimensional "semisimple" Lie algebras can be viewed as elementary building
blocks of more complicated Lie algebras, we will study them with an emphasis on the structure
theory and their representations. Finally, we will discuss representations of Lie groups and
prove a version of the Peter-Weyl Theorem, which is a statement about using irreducible
representations of a compact Lie group G to study the Hilbert space of square integrable
functions on G with respect to the so-called Haar measure. As a corollary of the Peter-Weyl
theorem, it follows that every compact Lie group can be realized as a matrix Lie group.
Literatur:
Die Links führen auf Webseiten, von denen aus dem
Universitätsnetz die jeweiligen Referenzen
zugänglich sind. Falls kein Link gesetzt ist, finden
Sie die Referenz in der Bibliothek des Mathematischen Institutes
Freiburg.
Vortragsprogamm:
Das Vortragsprogramm finden Sie
hier.
Die Vorträge können auf Deutsch oder auf Englisch präsentiert werden.
Tutorium: Dr. Santosh Kandel