Prof. em. Dr. Dr. h.c. Rolf Schneider
Mathematisches Institut
Albert-Ludwigs-Universität
Ernst-Zermelo-Str. 1
D-79104 Freiburg i. Br.
email: rolf.schneider@math.uni-freiburg.de
Second expanded edition
Research interests: Convex geometry,
integral
geometry,
stochastic
geometry
Preprints:
- Rolf Schneider: The Gauss image problem for pseudo-cones. arXiv:2412.06005
- Rolf Schneider: The copolarity of pseudo-cones. arXiv.2407.17320
- Rolf Schneider: Weighted cone-volume measures of pseudo-cones. arXiv.2407.05095
Publications of the last five years:
- Rolf Schneider: A weighted Minkowski theorem for pseudo-cones. Adv. Math. 450 (2024), Art. 109760, 26 pp. doi.org/10.1016/j.aim.2024.109760\\
- Daniel Hug and Rolf Schneider: Vectorial analogues of Cauchy's surface area formula. Arch. Math. 122 (2024), no. 3, 343--352.
- Rolf Schneider: Pseudo-cones. Adv. in Appl. Math. 155 (2024), Paper No. 102657, 22 pp. doi.org/10.1016/j.aam.2023.102657
- Rolf Schneider: Random zonotopes and valuations. Discrete Comput. Geom. 72 (2024), 975-985. doi.org/10.1007/s00454-023-00514-z
- Daniel Hug and Rolf Schneider: Another look at threshold phenomena for random
cones. Studia Sci. Math. Hungar. 58 (2021), 489-504. doi.org/10.1556/012.2021.01513 pdf
- Rolf Schneider: Minkowski type theorems for convex sets in
cones. Acta Math. Hungar. 164 (2021), 282-295. SpringerLink
pdf
- Rolf Schneider: Random Gale diagrams and neighborly polytopes in
high dimensions. Beitr. Algebra Geom.
67 (2021), 641-650 doi.org/10.1007/s13366-02000526-3 pdf
- Daniel Hug and Rolf Schneider: Threshold phenomena for random
cones. Discrete Comput. Geom. 67 (2022), 564-594. doi.org/10.1007/s00605-020-01443-2 pdf
- Rolf Schneider: Separation bodies: a conceptual dual to floating
bodies. Monatsh. Math. 193 (2020), 157-170. doi.org/
10.1007/s00605-020-01443-2 pdf
- Daniel Hug and Rolf Schneider: Integral geometry of pairs of
hyperplanes and lines. Arch. Math.115 (2020), 339-351. doi.org/10.1007/s00013-020-01465-0 pdf
- Daniel Hug and Rolf Schneider: Poisson hyperplane processes and
approximation of convex bodies.
Mathematika 66 (2020),
713-732.
pdf
- Rolf Schneider: On a formula for the volume of polytopes. In: Geometric Aspects of Functional Analysis (Israel
Seminar 2017-2019), vol. II, pp. 335-345, Lecture Notes Math. 2266, Springer, 2020. pdf
- Rolf
Schneider: The polytopes in a Poisson hyperplane
tessellation.
Proc. Amer. Math. Soc. 149 (2021), 3105-3111. doi.org/10.1090/proc/15146
List of publications: pdf
Errata
for
"Convex
Bodies - the Brunn-Minkowski Theory" (Second edition)
Errata
for "Stochastic and Integral Geometry"
Errata for
"Convex
Bodies - the Brunn-Minkowski Theory" (First edition)
Course Materials:
- Integral Geometry - Measure Theoretic Approach and Stochastic
Applications (part of an Advanced
Course on Integral Geometry, Centre de Recerca
Matemàtica, Bellaterra (Spain); September 15 - 23, 1999.
Quaderns núm. 16 (1999),
159 - 227) pdf
- Convexity and Geometric Probabilities (Lecture Series, University
of Heraklion, Crete, March - April, 2001) pdf
- Integral Geometric Tools for Stochastic Geometry (part of a
C.I.M.E. Summer School on Stochastic
Geometry,
Martina Franca, September 13 - 18, 2004) pdf
- Convexity in Stochastic Geometry (part of a Winter School on Probabilistic Methods in High Dimensions,
Toulouse, January 10 - 14, 2005) pdf
- Simplices (Educational talks in the Research Semester on Geometric Methods in Analysis and
Probability, Erwin Schrödinger Institute, Vienna, July
2005) pdf
- The use of spherical harmonics in convex geometry (Summer school
on "Fourier analytic and probabilistic methods in geometric
functional analysis and convexity", Kent State University, August
13-20, 2008) pdf
- Convex Cones. (Summer School "New Perspectives on Convex
Geometry", Castro Urdiales, September 3 - 7, 2018). pdf
(Last update: December 10th, .2024)